

Cambridge International AS & A Level

PHYSICS		9702/24
Paper 2 AS Level Str	ructured Questions	May/June 2025
MARK SCHEME		
Maximum Mark: 60		
	Published	

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2025 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

Annotations guidance for centres

Examiners use a system of annotations as a shorthand for communicating their marking decisions to one another. Examiners are trained during the standardisation process on how and when to use annotations. The purpose of annotations is to inform the standardisation and monitoring processes and guide the supervising examiners when they are checking the work of examiners within their team. The meaning of annotations and how they are used is specific to each component and is understood by all examiners who mark the component.

We publish annotations in our mark schemes to help centres understand the annotations they may see on copies of scripts. Note that there may not be a direct correlation between the number of annotations on a script and the mark awarded. Similarly, the use of an annotation may not be an indication of the quality of the response.

The annotations listed below were available to examiners marking this component in this series.

Annotations

Annotation	Meaning
^	Information missing or insufficient for credit
AE	Arithmetic error
BOD	Benefit of the doubt given
CON	Contradiction in response, mark not awarded
×	Incorrect point or mark not awarded
ECF	Error carried forward applied
I	Ignore the response
MO	Mandatory mark not awarded
POT	Power of ten error
SEEN	Blank page seen
SF	Error in number of significant figures

Annotation	Meaning
TE	Transcription error
✓	Correct point or mark awarded
XP	Incorrect physics

Abbreviations

1	Alternative and acceptable answers for the same marking point.
()	Bracketed content indicates words which do not need to be explicitly seen to gain credit but which indicate the context for an answer. The context does not need to be seen but if a context is given that is incorrect then the mark should not be awarded.
	Underlined content must be present in answer to award the mark. This means either the exact word or another word that has the same technical meaning.

Mark categories

B marks	These are <u>independent</u> marks, which do not depend on other marks. For a B mark to be awarded, the point to which it refers must be seen specifically in the candidate's answer.	
M marks	These are <u>mandatory</u> marks upon which A marks later depend. For an M mark to be awarded, the point to which it refers must be seen specifically in the candidate's answer. If a candidate is not awarded an M mark, then the later A mark cannot be awarded either.	
C marks	These are <u>compensatory</u> marks which can be awarded even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known them. For example, if an equation carries a C mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the C mark is awarded.	
	If a correct answer is given to a numerical question, all of the preceding C marks are awarded automatically. It is only necessary to consider each of the C marks in turn when the numerical answer is not correct.	
A marks	These are <u>answer</u> marks. They may depend on an M mark or allow a C mark to be awarded by implication.	

Question	Answer	Marks
1(a)	force × perpendicular distance (of line of action of force to a point)	B1
	or product of force and perpendicular distance (to a point)	
1(b)(i)	in (rotational) equilibrium	B1
	sum / total of CW moments about a point = sum / total of ACW moments about the (same) point.	B1
1(b)(ii)	component of weight = 75 × cos 42° = 56 N	A1
1(b)(iii)	$F \times 80$ or 56×40 or $F \times 0.8$ or 56×0.4 $F \times 80 = 56 \times 40$	C1
	F = 28 N	A1

Question	Answer	Marks
2(a)	product of mass and velocity	B1
2(b)	change in momentum = (-1.4) - (+2.8) = (-) 4.2 kg m s ⁻¹	A1
2(c)	$F = \Delta p / (\Delta)t$ or $F = \text{gradient}$	C1
	= 4.2 / 12	
	= 0.35 N	A1
2(d)	constant / uniform (rate of) decrease (of speed to zero).	B1

Question	Answer	Marks
2(e)	 The (resultant) force is constant / does not decrease air resistance would vary / decrease / not constant the force is not zero when speed / velocity is zero / at 8 s Any two of the above 3 marking points (1 mark each, max 2)	B2
2(f)	line from origin with decreasing positive gradient	B1
	gradient changes from positive to negative at 8.0 s	B1
	after $t = 8.0$ s the line has a negative gradient of increasing magnitude and a positive value of d at $t = 12$ s	B1

Question	Answer	Marks
3(a)	$E_{(K)} = \frac{1}{2}mv^2$	C1
	$110 = \frac{1}{2} \times 5.5 \times v^2$	
	$v = 6.3 \mathrm{m s^{-1}}$	A1
3(b)	$(\Delta)E_{(P)}/20 = mg(\Delta)h \text{ OR } (\Delta)E_{(P)}/20 = mgx_0$	C1
	$(x_0 =) 20 / 5.5 \times 9.81 = 0.37 \text{ (m)}$	A 1
	Allow $(\Delta)h$ for x_0	
3(c)	$[\max(E_{(P)})] = 110 + 20 = 130 J$	A 1

Question	Answer	Marks
3(d)	(max) $E_{(P)} / 130 = \frac{1}{2} F_{(0)} x_{(0)}$	C1
	$(F_0 =) 2 \times 130 / 0.37 = 700 (N)$	A1
	or (max) $E_{(P)}/130 = 1/2k x_{(0)}^2$	(C1)
	$(F_0 =) k x_{(0)}$	
	$(F_0 =) 2 \times 130 \times 0.37 / (0.37)^2 = 700 \text{ (N)}$	(A1)
3(e)(i)	(weight) = 5.5×9.81	C1
	resultant force = 700 – (5.5 × 9.81) = 650 N	A 1
3(e)(ii)	F = ma	C1
	a = 650 / 5.5 or $(700 / 5.5) - 9.81a = 120 \text{ m s}^{-2}$	A1

Question	Answer	Marks
4(a)(i)	(a wave that) transfers / propagates energy	B1
4(a)(ii)	distance = $n\lambda$	B1
	time $t = n/f$	B1
4(a)(iii)	(v = distance / time) $(v) = n\lambda / (n/f) \text{ so } (v) = f\lambda$	B1
4(b)(i)	$f = 3 \times 10^{8} / 4 \times 10^{-2}$ = 7.5 × 10 ⁹ (Hz) = 7.5 × 10 ⁹ / 10 ⁹ (GHz)	C1
	= 7.5 GHz	A1
4(b)(ii)	(difference in path lengths, $XQ - YQ$) = $\left[72^2 + 30^2\right]^{\frac{1}{2}} - 72 = 6$ (cm)	A1
	Or calculate angle Q using tan and then cos to obtain XQ of 78 $\tan \theta = 30/72$ so $\theta = 22.6$ XQ = 72 / cos 22.6 = 78 (cm) path difference 78 – 72 = 6 (cm)	(A1)
	Or calculate angle X using tan and then cos to obtain XQ of 78 $\tan\theta=72/30$ so $\theta=67.4$ XQ = 72/sin 67.4 = 78 (cm) path difference 78 – 72 = 6 (cm)	(A1)
4(b)(iii)	path difference (= 6 cm / 4 cm) λ = 1.5 λ	M1
	(so) phase difference (at Q) = 540° or 180°	M1
	(so) intensity is minimum	A1

Question	Answer	Marks
4(b)(iv)	amplitude changes from maximum (at P) to minimum (at Q)	C1
	amplitude changes from maximum (at P) to minimum to maximum to minimum (at Q)	A 1

Question	Answer	Marks
5(a)(i)	temperature decreases, resistance decreases	B1
5(a)(ii)	line from origin with decreasing gradient drawn in first quadrant or line from origin with decreasing gradient drawn in third quadrant	M1
	line drawn in the third or first quadrant of similar composition (straight line from origin followed by correct curve) and similar size as compared by eye to the first line	A1
5(b)(i)	E=P/I = 18/1.5	C1
	= 12 V	A1
5(b)(ii)	<i>I</i> = 3.3 – 1.5 = 1.8	C1
	$I = Anvq$ $1.8 = 1.4 \times 10^{-9} \times 3.4 \times 10^{28} \times v \times 1.6 \times 10^{-19}$	C1
	$v = 0.24 \mathrm{ms^{-1}}$	A1

Question	Answer	Marks
6(a)	2.4 / 6.0 = 8 / (R + 8)	C1
	$R = 12 \Omega$	A1
	or I = 2.4/8 = 0.30 R = (6-2.4)/0.3 or $R = (6/0.3)-8$	(C1)
	$R = 12 \Omega$	(A1)
6(b)	$V=I(\rho L/A)$ or $V=IR$ and $R=(\rho L/A)$	M1
	I, ρ, A are constant (so $V \propto L$)	A1
6(c)(i)	$V_{XP} / V_{XY} = L_{XP} / L_{XY}$ E/2.4 = 1.24/2.00	C1
	E=1.5 V	A1
6(c)(ii)	p.d. across XY / wire increases / p.d. across XP increases	M1
	so P moved towards X / away from Y / to the left	A1

Question	Answer	Marks
7(a)	 (electron) neutrino (electron) antineutrino electron positron Any two, 1 mark each	B2
7(b)	only meson and neutron are underlined	B1
7(c)	(quark composition is) up, up, down / uud (charge =) $\frac{2}{3}e + \frac{2}{3}e - \frac{1}{3}e = (+1)e = (+) 1.6 \times 10^{-19}$ (C)	B1
	or (charge =) $1.07 \times 10^{-19} + 1.07 \times 10^{-19} - 5.33 \times 10^{-20} = (+) 1.6 \times 10^{-19} (C)$	A 1