

Cambridge International AS & A Level

PHYSICS		9702/43
Paper 4 A Level Stru	ctured Questions	May/June 2025
MARK SCHEME		
Maximum Mark: 100		
	Published	

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2025 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

Annotations guidance for centres

Examiners use a system of annotations as a shorthand for communicating their marking decisions to one another. Examiners are trained during the standardisation process on how and when to use annotations. The purpose of annotations is to inform the standardisation and monitoring processes and guide the supervising examiners when they are checking the work of examiners within their team. The meaning of annotations and how they are used is specific to each component and is understood by all examiners who mark the component.

We publish annotations in our mark schemes to help centres understand the annotations they may see on copies of scripts. Note that there may not be a direct correlation between the number of annotations on a script and the mark awarded. Similarly, the use of an annotation may not be an indication of the quality of the response.

The annotations listed below were available to examiners marking this component in this series.

Annotations

Annotation	Meaning
AE	arithmetic error
BOD	benefit of the doubt given
CON	contradiction in response, mark not awarded
✓	correct point or mark awarded
ECF	error carried forward applied
SF	error in number of significant figures
I	incorrect or insufficient point ignored while marking the rest of the response
XP	incorrect physics
×	incorrect point or mark not awarded
^	information missing or insufficient for credit

Annotation	Meaning	
MO	nandatory mark not awarded	
SEEN	point has been noted, but no credit has been given or plank page seen	
POT	power of ten error	
TE	transcription error	

Abbreviations

1	Alternative and acceptable answers for the same marking point.
()	Bracketed content indicates words which do not need to be explicitly seen to gain credit but which indicate the context for an answer. The context does not need to be seen but if a context is given that is incorrect then the mark should not be awarded.
	Underlined content must be present in answer to award the mark. This means either the exact word or another word that has the same technical meaning.

Mark categories

B marks	These are <u>independent</u> marks, which do not depend on other marks. For a B mark to be awarded, the point to which it refers must be seen specifically in the candidate's answer.
M marks	These are <u>mandatory</u> marks upon which A marks later depend. For an M mark to be awarded, the point to which it refers must be seen specifically in the candidate's answer. If a candidate is not awarded an M mark, then the later A mark cannot be awarded either.
C marks	These are <u>compensatory</u> marks which can be awarded even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known them. For example, if an equation carries a C mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the C mark is awarded.
	If a correct answer is given to a numerical question, all of the preceding C marks are awarded automatically. It is only necessary to consider each of the C marks in turn when the numerical answer is not correct.
A marks	These are <u>answer</u> marks. They may depend on an M mark or allow a C mark to be awarded by implication.

Question	Answer	Marks
1(a)	work done per unit mass	B1
	work (done in) moving mass from infinity (to the point)	B1
1(b)(i)	evidence of addition of 3.4×10^6 to 1.7×10^6 or 6.8×10^6	C1
	$GM \times 122/(5.1 \times 10^6)$ or $GM \times 122/(10.2 \times 10^6)$	C1
	$6.67 \times 10^{-11} \times M \times 122 \times [(5.1 \times 10^6)^{-1} - (10.2 \times 10^6)^{-1}] = 5.1 \times 10^8$	A1
	leading to $M = 6.4 \times 10^{23} \text{kg}$	
1(b)(ii)	$\phi = (-)(6.67 \times 10^{-11} \times 6.4 \times 10^{23})/(3.4 \times 10^{6})$	C1
	$=-1.3\times10^7\mathrm{Jkg^{-1}}$	A1
1(c)(i)	Mars takes (just under) 25 hours to rotate once on its axis	B1
1(c)(ii)	orbit is equatorial	B1
	or orbit is in same direction as direction of rotation of Mars	

Question	Answer	Marks
2(a)	(electric) force is (directly) proportional to product of charges	B1
	force (between point charges) is inversely proportional to the square of their separation	B1
2(b)(i)	charge = (+)2e	A1
2(b)(ii)	$F = 2 \times (1.60 \times 10^{-19})^2 / [4\pi \times 8.85 \times 10^{-12} \times (170 \times 10^{-12})^2] = 1.6 \times 10^{-8} \text{ N}$	A1
2(c)(i)	$F = mv^2/r$	C1
	$v = [(1.6 \times 10^{-8} \times 170 \times 10^{-12}) / (9.11 \times 10^{-31})]^{\frac{1}{2}}$	A1
	$= 1.7 \times 10^6 \mathrm{m s^{-1}}$	
2(c)(ii)	$F = mr\omega^2$ and $\omega = 2\pi/T$	C1
	$F = 4\pi^2 mr / T^2$	
	$T = [(4\pi^2 \times 9.11 \times 10^{-31} \times 170 \times 10^{-12}) / (1.6 \times 10^{-8})]^{\frac{1}{2}}$	A1
	$=6.2 \times 10^{-16} \text{ s}$	
	or	
	$v = 2\pi r/T$	(C1)
	$T = (2\pi \times 170 \times 10^{-12}) / (1.73 \times 10^{6})$	(A1)
	$=6.2 \times 10^{-16} \mathrm{s}$	

Question	Answer	Marks
2(d)(i)	$E \propto Q/r^2$	C1
	ratio = $[1.60 \times 10^{-19} \times (170 \times 10^{-12})^2] / [3.2 \times 10^{-19} \times (340 \times 10^{-12})^2]$	A1
	= 0.13	
2(d)(ii)	resultant force slightly less (than $1.6 \times 10^{-8} \mathrm{N}$) so speed lower	B1
	resultant force slightly less (than 1.6×10^{-8} N) so period greater	

Question	Answer	Marks
3(a)	(thermal) energy per unit mass (to cause state change)	B1
	(thermal) energy to change state at constant temperature	B1
3(b)	(for vaporisation): involves greater change in volume (of substance) or involves greater increase in separation of molecules	B1
	more work has to be done by molecules (to separate) or greater increase in potential energy of molecules	M1
	kinetic energy of molecules unchanged, so more thermal energy needed	A1
3(c)	$Q = mc\Delta\theta$ and $Q = mL$	C1
	$\Delta\theta$ for the water = 26.4 – 10.3	C1
	$(37.0 \times L) + (37.0 \times 4.18 \times 10.3) = (208 \times 4.18 \times 16.1)$	C1
	$L = 335 \mathrm{J}\mathrm{g}^{-1}$	A1

Question		Answer			Marks	
4(a)(i)	sum of potential en	sum of potential energy and kinetic energy			B1	
	(total) energy of rar	ndom motion of pa	rticles			B1
4(a)(ii)	potential energy (or (of molecules)	potential energy (of molecules) (in an ideal gas) is zero, so the internal energy of the gas is equal to the total kinetic energy (of molecules)			B1	
		kinetic energy of molecules is proportional to (thermodynamic) temperature (so internal energy is proportional to (thermodynamic) temperature))			B1	
4(b)	cooling work done = 0 compression increase in internal energy = $+2U$ cooling change in internal energy = $-U$				B1	
					B1	
					B1	
	both rows: thermal	energy adds to wo	ork to give increase	in internal energy	in terms of <i>U</i> and/or <i>W</i>	B1
	(if fully correct, thermal energy for compression = $2U - W$ and thermal energy for cooling = $-U$:					
	compression	compression $+W$ $2U-W$ $+2U$				
	cooling	0	-U	-U		
					1	

Question	Answer	Marks
5(a)(i)	amplitude = 0.60 m	A1
5(a)(ii)	oscillations are simple harmonic	B1
5(b)	 Any three points from: mean / equilibrium position is at h = 1.4 m total energy of oscillations = 9.0 J angular frequency of oscillations = 1.2 rad s⁻¹ or period of oscillations = 5.1 s or frequency of oscillation = 0.19 Hz maximum speed of block = 0.73 m s⁻¹ mass of block = 33 kg 	В3
5(c)	U-shaped curve resting on h axis (with minimum at $E_P = 0$)	В1
	curve from $h = 0.8$ m to $h = 2.0$ m, with minimum E_P shown at $h = 1.4$ m	B1
	both end-points of curve shown at E_P = 9.0 J	B1

Question	Answer	Marks
6(a)(i)	conversion from a.c. to d.c.	B1
6(a)(ii)	smoothing	B1
6(b)(i)	A = 12 V	A1
	$B = 2\pi / (20 \times 10^{-3})$	A1
	$= 310 \text{rad s}^{-1}$	
6(b)(ii)	full-wave (rectification)	B1
6(b)(iii)	four diodes shown, with correct circuit symbols	B1
	four diodes correctly connected to form a bridge rectifier	B1
6(b)(iv)	$V = V_0 \exp(-t/\tau)$	C1
	or $V = V_0 \exp(-t/RC)$ and $\tau = RC$	
	$8.0 = 12 \exp(-7.3 \times 10^{-3} / \tau)$	C1
	τ = 0.018 s	A1
6(c)	time constant = RC	C1
	$R = (0.018/570 \times 10^{-6})$	A1
	= 32 Ω	

Question	Answer	Marks
7(a)	 force per unit length force per unit current length / current perpendicular to field 	B2
	1 mark for any two points, 2 marks for all three points.	
7(b)(i)	F = BQv	B1
7(b)(ii)	arrow at Y pointing vertically upwards	B1
7(b)(iii)	upwards deflection showing circular path	B1
7(c)(i)	electric field applied vertically downwards (may be shown on a labelled diagram)	B1
	electric force on particle in opposite direction to magnetic force (may be shown on a labelled diagram)	B1
	particle undeflected when magnitudes of electric and magnetic forces are equal	B1
7(c)(ii)	EQ = BQv	B1
	v=E/B	A1

Question	Answer	Marks
8(a)	wavelength associated with a moving particle	B1
8(b)	$\lambda = h/p$	C1
	$= (6.63 \times 10^{-34}) / (9.11 \times 10^{-31} \times 4.9 \times 10^{7})$	A1
	$= 1.5 \times 10^{-11} \mathrm{m}$	
8(c)	similarity: any one point from:	B1
	 same mass same magnitude of charge 	
	both leptons	
	difference: any one point from:	B1
	electron has negative charge, positron has positive charge	
	 positron is anti-particle of electron electron is a particle, positron is an anti-particle 	
8(d)(i)	(pair) annihilation	B1
8(d)(ii)	their mass gets converted into energy	B1
	(their mass-energy) becomes the energy of the gamma photons	B1
8(d)(iii)	they travel in opposite directions to conserve momentum	B1
8(d)(iv)	kinetic energy = $\frac{1}{2} \times 9.11 \times 10^{-31} \times (4.9 \times 10^7)^2 = 1.1 \times 10^{-15} \text{ J}$	A1

Question	Answer	Marks
8(d)(v)	$E = mc^2$	C1
	$E = hc/\lambda$	C1
	or $E = hf$ and $c = f\lambda$	
	$(1.1 \times 10^{-15}) + (9.11 \times 10^{-31} \times (3.00 \times 10^8)^2) = (6.63 \times 10^{-34} \times 3.00 \times 10^8) / \lambda$	A1
	$\lambda = 2.39 \times 10^{-12} \mathrm{m}$	

Question	Answer	Marks
9(a)	number of nuclear disintegrations per unit time	B1
9(b)	activity is proportional to the number of undecayed nuclei	B1
	activity = (-) rate of change of number of undecayed nuclei	B1
	N is proportional to the rate of change of N (so exponential variation)	B1
9(c)(i)	$120 = 180 \exp(-\lambda \times 8.4)$	C1
	$\lambda = 0.048 \text{min}^{-1}$	A1
9(c)(ii)	half-life = In 2 / 0.048	A1
	= 14 min	
9(c)(iii)	line with negative gradient throughout, starting at (0, 180)	B1
	curve with negative gradient passing through (8.4, 120)	B1
	curve with decreasing negative gradient, from $t = 0$ to $t = 24$ min, passing through (14, 90)	B1

Question	Answer	Marks
10(a)	speed is (directly) proportional to distance	M1
	speed is speed of recession of galaxy from an observer, and distance is the distance of the galaxy from the observer	A1
10(b)(i)	galaxy is receding from the Earth	B1
	observed wavelength is redshifted from emitted wavelength	B1
10(b)(ii)	$\Delta \lambda / \lambda = v/c$	C1
	$(4.91-4.62)/4.62 = v/(3.00 \times 10^8)$	
	$v = 1.9 \times 10^7 \mathrm{m s^{-1}}$	A1
10(b)(iii)	wavelength (of maximum intensity) is inversely proportional to temperature	B1
	observed wavelength too high, so determined temperature too low	B1
10(c)	$v = H_0 d$	C1
	$d = (1.9 \times 10^7) / (2.3 \times 10^{-18})$	A1
	$= 8.3 \times 10^{24} \mathrm{m}$	