

Cambridge International AS & A Level

PHYSICS**9702/22**

Paper 2 AS Level Structured Questions

October/November 2024**MARK SCHEME**

Maximum Mark: 60

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

This document consists of **11** printed pages.

Question	Answer	Marks
1(a)	a quantity with magnitude and direction	B1
1(b)(i)	SI base units of D : kg m s^{-2}	C1
	SI base units of r : m and v : m s^{-1}	C1
	base units of η : $\text{kg m s}^{-2} / (\text{m} \times \text{m s}^{-1})$ $= \text{kg m}^{-1} \text{s}^{-1}$	A1
1(b)(ii)	$W = U + D$	A1
1(b)(iii)	$U = 830 \times 9.81 \times 4.6 \times (10^{-2})^3$ $(= 0.037 \text{ N})$	C1
	$W = 0.037 + 0.32$ $= 0.36 \text{ N}$	A1

Question	Answer	Marks
2(a)	product of mass and velocity	B1
2(b)	$F = m\Delta v / \Delta t$ $= 16 \times 0.60 / 1.1$	C1
	$= 8.7 \text{ N}$	A1
2(c)	$x = ut + \frac{1}{2}at^2$ $x = 0.60 \times 3.7 + \frac{1}{2} \times 0.85 \times 3.7^2$	C1
	or	
	$v = 0.60 + 0.85 \times 3.7 (= 3.75 \text{ m s}^{-1})$	(C1)
	$x = 3.75 \times 3.7 - 0.5 \times 0.85 \times 3.7^2$	
	or	
	$x = \frac{1}{2} \times (0.60 + 3.75) \times 3.7$	
	or	
	$x = (3.75^2 - 0.60^2) / (2 \times 0.85)$	
	$x = 8.0 \text{ m}$	A1
2(d)(i)	$F = W/s$	C1
	$= 250 / 18$	A1
	$= 14 \text{ N}$	
2(d)(ii)	any line starting at distance = 0 and a positive non-zero value of kinetic energy	B1
	a straight line from distance = 0 to distance = x with positive gradient	B1
	a straight horizontal line at a non-zero value of kinetic energy starting at distance = x and ending at distance = $x + 18 \text{ m}$ that is continuous with the previous line	B1

Question	Answer	Marks
3(a)(i)	$E = \sigma / \epsilon$ or $E = \text{gradient}$	C1
	$E = \text{e.g. } 12 \times 10^7 / 0.0050$ $= 2.4 \times 10^{10} \text{ Pa}$	A1
3(a)(ii)	cross drawn at (1.0%, $24 \times 10^7 \text{ Pa}$), labelled Q	B1
3(b)	resultant force (in any direction) is zero	B1
	resultant moment / torque (about any point) is zero	B1
3(c)(i)	(moment =) $33 \times 0.65 / 2$ or $1.5 \times (0.65 - 0.12)$ or $T \sin 50^\circ \times (0.65 / 2)$	C1
	sum of clockwise moments = sum of anticlockwise moments	C1
	$33 \times (0.65 / 2) + 1.5 \times (0.65 - 0.12) = T \sin 50^\circ \times (0.65 / 2)$	
	tension = 46 N	A1
3(c)(ii)	$\sigma = F / A$	C1
	$\pi r^2 = 46 / (1.5 \times 10^7)$ $r = 9.9 \times 10^{-4} \text{ m}$	A1

Question	Answer	Marks
3(c)(iii)	elastic limit is not reached or (new) stress is less than (stress at) elastic limit or (new) strain is less than (strain at) elastic limit	M1
	(so the wire behaves) elastically	A1

Question	Answer	Marks
4(a)	longitudinal waves have oscillations <u>parallel</u> to the (direction of) transfer of energy	B1
	transverse waves have oscillations <u>perpendicular</u> to the (direction of) transfer of energy	B1
4(b)(i)	A marked at the open end of the pipe	B1
4(b)(ii)	$f = v / \lambda$	C1
	$\lambda = 4 \times 4.5 \times 10^{-2}$	C1
	$f = 340 / (4 \times 4.5 \times 10^{-2})$ = 1900 Hz	A1
4(b)(iii)	the node–antinode distance is longer or the wavelength (of the wave) is longer	M1
	(the speed of sound is constant so) the frequency (of the wave) is lower	A1

Question	Answer	Marks
5(a)	energy transferred per unit charge (from electrical to other forms)	B1
5(b)(i)	heater	A1
5(b)(ii)	$(V =) 7.0 \times 0.86 = 6.0 \text{ (V)}$	A1
5(b)(iii)	$I = (230 - 6.0) / 170$ $(= 1.3 \text{ A})$	C1
	$I_1 = 7.0 - 1.3$ $= 5.7 \text{ A}$	A1
5(b)(iv)	$V = 230 - 6.0 - (5.7 \times 2.4)$ $= 210 \text{ V}$	C1
	or	A1
	$R = ((230 - 6.0) / 5.7) - 2.4$ $(= 36.9 \Omega)$	(C1)
	$V = 5.7 \times 36.9$ $= 210 \text{ V}$	(A1)

Question	Answer	Marks
5(b)(v)	$P = IV$ or $P = I^2R$ or $P = V^2 / R$ $P = 5.7 \times 210$ or $P = 5.7^2 \times (210 / 5.7)$ or $P = 210^2 / (210 / 5.7)$ $P = 1200 \text{ W}$	C1
5(b)(vi)	% efficiency = <u>useful</u> power out / (total) power in ($\times 100$) $= 1200 / (230 \times 7.0) (\times 100)$ $= 0.75 (\times 100)$ $= 75\% \text{ or } 74\% \text{ (using 3 s.f. value from (v) gives } 74\%)$	A1
5(b)(vii)	(current) decreases	A1

Question	Answer	Marks
6(a)	mass of α (particle) is <u>much</u> greater (than β^+ particle)	B1
	both particles are positively charged	B1
	(magnitude of) charge on α (particle) is twice the charge (on β^+ particle)	B1
6(b)(i)	cross labelled Q at (82, 212)	B1
6(b)(ii)	particles emitted are: • beta-minus (particle) / electron • (electron) antineutrino either particle named	B1
	both particles named and no incorrect particles named	B1
6(c)(i)	$212(u) \times 1.3 (\times 10^5) \sin 68^\circ$ or $4(u) \times 150 (\times 10^5) \sin \theta$	C1
	$4(u) \times 150 (\times 10^5) \times \sin \theta = 212(u) \times 1.3 (\times 10^5) \times \sin 68^\circ$	C1
	$\sin \theta = 0.426$	A1
	$\theta = 25^\circ$	
6(c)(ii)	$E = \frac{1}{2}mv^2$	C1
	$= \frac{1}{2} \times 4 u \times (150 \times 10^5)^2$	A1
	$= \frac{1}{2} \times 4 \times 1.66 \times 10^{-27} \times (150 \times 10^5)^2$	
	$= 7.5 \times 10^{-13} \text{ J}$	