

Cambridge International AS & A Level

PHYSICS

9702/42

Paper 4 A Level Structured Questions

March 2020

MARK SCHEME

Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2020 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

This document consists of **19** printed pages.

Examples of how to apply the list ruleState **three** reasons.... [3]**A**

1	Correct	✓	2
2	Correct	✓	
3	Wrong	✗	

B**(4 responses)**

1	Correct, Correct	✓, ✓	3
2	Correct	✓	
3	Wrong	ignore	

C**(4 responses)**

1	Correct	✓	2
2	Correct, Wrong	✓, ✗	
3	Correct	ignore	

D**(4 responses)**

1	Correct	✓	2
2	Correct, CON (of 2.)	✗, (discount 2)	
3	Correct	✓	

E**(4 responses)**

1	Correct	✓	3
2	Correct	✓	
3	Correct, Wrong	✓	

F**(4 responses)**

1	Correct	✓	2
2	Correct	✓	
3	Correct CON (of 3.)	✗ (discount 3)	

G**(5 responses)**

1	Correct	✓	3
2	Correct	✓	
3	Correct Correct CON (of 4.)	✓ ignore ignore	
4			

H**(4 responses)**

1	Correct	✓	2
2	Correct	✗	
3	CON (of 2.) Correct	✓ (discount 2)	

I**(4 responses)**

1	Correct	✓	2
2	Correct	✗	
3	Correct CON (of 2.)	✓ (discount 2)	

Abbreviations

/	Alternative and acceptable answers for the same marking point.
()	Bracketed content indicates words which do not need to be explicitly seen to gain credit but which indicate the context for an answer. The context does not need to be seen but if a context is given that is incorrect then the mark should not be awarded.
—	Underlined content must be present in answer to award the mark. This means either the exact word or another word that has the same technical meaning.

Mark categories

B marks	These are <u>independent</u> marks, which do not depend on other marks. For a B mark to be awarded, the point to which it refers must be seen specifically in the candidate's answer.
M marks	These are <u>method</u> marks upon which A marks later depend. For an M mark to be awarded, the point to which it refers must be seen specifically in the candidate's answer. If a candidate is not awarded an M mark, then the later A mark cannot be awarded either.
C marks	These are <u>compensatory</u> marks which can be awarded even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known them. For example, if an equation carries a C mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the C mark is awarded. If a correct answer is given to a numerical question, all of the preceding C marks are awarded automatically. It is only necessary to consider each of the C marks in turn when the numerical answer is not correct.
A marks	These are <u>answer</u> marks. They may depend on an M mark or allow a C mark to be awarded by implication.

Annotations

✓	Indicates the point at which a mark has been awarded.
X	Indicates an incorrect answer or a point at which a decision is made not to award a mark.
XP	Indicates a physically incorrect equation ('incorrect physics'). No credit is given for substitution, or subsequent arithmetic, in a physically incorrect equation.
ECF	Indicates 'error carried forward'. Answers to later numerical questions can always be awarded up to full credit provided they are consistent with earlier incorrect answers. <u>Within</u> a section of a numerical question, ECF can be given after AE, TE and POT errors, but not after XP.

AE	Indicates an arithmetic error. Do not allow the mark where the error occurs. Then follow through the working/calculation giving full subsequent ECF if there are no further errors.
POT	Indicates a power of ten error. Do not allow the mark where the error occurs. Then follow through the working/calculation giving full subsequent ECF if there are no further errors.
TE	Indicates incorrect transcription of the correct data from the question, a graph, data sheet or a previous answer. For example, the value of 1.6×10^{-19} has been written down as 6.1×10^{-19} or 1.6×10^{19} . Do not allow the mark where the error occurs. Then follow through the working/calculation giving full subsequent ECF if there are no further errors.
SF	Indicates that the correct answer is seen in the working but the final answer is incorrect as it is expressed to too few significant figures.
BOD	Indicates that a mark is awarded where the candidate provides an answer that is not totally satisfactory, but the examiner feels that sufficient work has been done ('benefit of doubt').
CON	Indicates that a response is contradictory.
I	Indicates parts of a response that have been seen but disregarded as irrelevant.
M0	Indicates where an A category mark has not been awarded due to the M category mark upon which it depends not having previously been awarded.
^	Indicates where more is needed for a mark to be awarded (what is written is not wrong, but not enough). May also be used to annotate a response space that has been left completely blank.
SEEN	Indicates that a page has been seen.

Question	Answer	Marks
1(a)	work done per unit mass	B1
	work done moving mass from infinity (to the point)	B1
1(b)(i)	gravitational force provides centripetal force	C1
	$mv^2 / r = GMm / r^2$ and $v = 2\pi r / T$ OR $mr\omega^2 = GMm / r^2$ and $\omega = 2\pi / T$ OR $r^3 = GMT^2 / 4\pi^2$	C1
	$r^3 = 6.67 \times 10^{-11} \times 6.0 \times 10^{24} \times (13.7 \times 24 \times 3600)^2 / 4\pi^2$ so $r = 2.4 \times 10^8$ m	A1
1(b)(ii)	$(E_p = -) GMm / r$ work done = $GMm / r_1 - GMm / r_2$	C1
	$= 6.67 \times 10^{-11} \times 360 \times 6.0 \times 10^{24} (1/6.4 \times 10^6 - 1/2.4 \times 10^8)$	C1
	$= 2.2 \times 10^{10}$ J	A1
1(b)(iii)	$g = GM / r^2$	C1
	ratio = r_{TESS}^2 / r_{earth}^2 $= (2.4 \times 10^8 / 6.4 \times 10^6)^2$ $= 1400$	A1

Question	Answer	Marks
2(a)	$n = 110 / 0.032$ or $110000 / 32$ or 3440	C1
	$pV = nRT$	C1
	$T = (1.0 \times 10^5 \times 85) / (8.31 \times (110 / 0.032)) = 300 \text{ K}$	A1
2(b)	$E = mc\Delta\theta$ $= 110 \times 0.66 \times 50$	C1
	= 3600 J	A1
	Any 3 from: <ul style="list-style-type: none">• molecule collides with wall• momentum of molecule changes during collision (with wall)• force on molecule so force on wall• many forces act over surface area of container exerting a pressure	B3
2(d)	$KE \propto T$ $v \propto \sqrt{T}$	C1
	ratio $= \sqrt{(350 / 300)}$ $= 1.1$	A1

Question	Answer	Marks
3(a)(i)	0.050 m	A1
3(a)(ii)	$\omega = v_0 / x_0$	C1
	$T = 2\pi / \omega$	C1
	$0.42 = (2\pi \times 0.050) / T$	
	$T = 0.75 \text{ s}$	A1
3(a)(iii)	one point labelled P where ellipse crosses displacement axis marked	A1
3(b)(i)	(induced) e.m.f. proportional to rate of change of (magnetic) flux (linkage)	M1 A1
3(b)(ii)	(there is) current in the circuit <i>either</i> current causes thermal energy (dissipated) in resistor thermal energy comes from energy of magnet <i>or</i> current causes magnetic field around coil two fields cause an opposing force on magnet	B1 B1 B1 B1 (B1) (B1)

Question	Answer	Marks
4(a)(i)	Any 2 from: <ul style="list-style-type: none"> • allows the reflected signal to be distinguished from the emitted signal • detection occurs in the time between emitted pulses • (reflection of ultrasound) detected by same probe / transducer / crystal • cannot emit and detect at same time (hence pulses) 	B2
4(a)(ii)	piezo-electric crystal	B1
	ultrasound makes crystal vibrate / resonate	B1
	vibration produces (alternating) e.m.f. / p.d. across crystal	B1
4(b)(i)	$= (1.6 \times 10^6 - 4.3 \times 10^2)^2 / (1.6 \times 10^6 + 4.3 \times 10^2)^2$ = 0.999	B1
4(b)(ii)	without the gel most of the ultrasound is reflected	B1
	Z values more similar / α reduces so less (ultrasound) is reflected / more (ultrasound) is transmitted	B1

Question	Answer	Marks
5(a)	Any 2 from: <ul style="list-style-type: none"> • noise can be filtered out / noise can be removed / signal can be regenerated • can carry more information per unit time / greater rate of transmission of data • can have extra bits of data to check for errors • can be encrypted 	B2
5(b)(i)	$v \propto \lambda$	C1
	ratio $= v_{\text{air}} / v_{\text{fibre}}$ $= 3.00 \times 10^8 / 2.07 \times 10^8$ $= 1.45$	A1
5(b)(ii)	attenuation $= 10 \log (P_2/P_1)$	C1
	$0.40 \times L = 10 \log (1.5 / 0.06)$	C1
	$0.40 \times L = 13.979$	
	$L = 35 \text{ km}$	A1

Question	Answer	Marks
6(a)	2.0 cm	B1
6(b)	At 16 (cm) from A the electric fields are equal or $E_A = E_B$ $E = Q / 4\pi\epsilon_0 r^2$ $Q_A / (4\pi\epsilon_0 r_A^2) = Q_B / (4\pi\epsilon_0 r_B^2)$ $3.6 \times 10^{-9} / 0.16^2 = Q_B / 0.08^2$ $Q_B = 9.0 \times 10^{-10} \text{ C}$	B1 C1 A1
6(c)(i)	$V = Q / 4\pi\epsilon_0 r_A$ $V = 3.6 \times 10^{-9} / (4 \times \pi \times 8.85 \times 10^{-12} \times 0.020)$ $V = 1600 \text{ V}$	C1 A1
6(c)(ii)	$C = Q / V$ $= 3.6 \times 10^{-9} / 1600$ $= 2.3 \times 10^{-12} \text{ F}$	C1 A1

Question	Answer	Marks
7(a)	axes labelled with resistance and temperature	M0
	concave curve not touching temperature axis	A1
	line with negative gradient throughout	A1
7(b)	resistance of thermistor decreases	B1
	total circuit resistance decreases so voltmeter reading increases <i>or</i> current increases so voltmeter reading increases	B1
	<i>or</i> greater proportion of resistance in fixed resistor so voltmeter reading increases	
	<i>or</i> p.d. across thermistor decreases so voltmeter reading increases	
7(c)	(0.020 strain means) $\Delta R / R = 0.090$	C1
	$\Delta R = 0.090 \times 120 = 10.8 \Omega$	C1
	resistance = $120 + 10.8 = 130 \Omega$	A1

Question	Answer	Marks
8(a)	a region where a magnet / magnetic material / moving charge / current carrying conductor experiences a force	B1
8(b)	$B = F / Il$ e.g. $= 9 \times 10^{-3} / (5.0 \times 0.045)$ = 0.040 T	C1 A1
8(c)(i)	force is (always) perpendicular to the velocity / direction of motion magnetic force provides the centripetal force <i>or</i> force perpendicular to motion causes circular motion magnitude of force (due to the magnetic field) is constant <i>or</i> no work done by force <i>or</i> the force does not change the speed	B1 B1 B1
8(c)(ii)	Applying the list rule, any 2 from: accelerating p.d. radius of path / radius of semicircle magnetic flux density	B2

Question	Answer	Marks
9(a)(i)	$9.0 / \sqrt{2} =$ 6.4 V	A1
9(a)(ii)	$\omega = 20$ $\omega = 2\pi / T$ $T = 2\pi / 20$	C1
	$T = 0.31$ s	A1
9(b)	the r.m.s. voltages are different, so no	B1
9(c)(i)	$P = V_{\text{r.m.s.}} \times I_{\text{r.m.s.}}$	C1
	$= 120 \times 0.64$ $= 76.8 \text{ W}$	C1
	efficiency $= (76.8 / 80) \times 100$ $= \mathbf{0.96 \text{ or } 96 \%}$	A1
9(c)(ii)	Any one from: <ul style="list-style-type: none">• heat losses due to resistance of windings / coils• heat losses in magnetising and demagnetising core / hysteresis losses in core• heat losses due to eddy currents in (iron) core• loss of flux linkage	B1

Question	Answer	Marks
10(a)	energy of a photon required to remove an electron	B1
	<i>either:</i> energy to remove electron from a surface <i>or:</i> <u>minimum</u> energy to remove electron <i>or:</i> energy to remove electron with zero <u>kinetic</u> energy	B1
10(b)(i)	Correct read off from graph of f as 5.45×10^{14} Hz when $E_{MAX} = 0$ $5.45 \times 10^{14} \times 6.63 \times 10^{-34}$ $= 3.6 \times 10^{-19}$ J	C1
10(b)(ii)	$3.6 \times 10^{-19} / 1.6 \times 10^{-19} = 2.3$ eV so potassium	A1
10(c)(i)	each photon has same energy so no change	B1
10(c)(ii)	more photons (per unit time) so (rate of emission) increases	B1

Question	Answer	Marks
11(a)	$eV = hf$ $f = 1.60 \times 10^{-19} \times 100\,000 / 6.63 \times 10^{-34}$ $= 2.41 \times 10^{19} \text{ Hz}$	C1 A1
11(b)	(aluminium filter) absorbs (most) low energy X-rays Any 2 from <ul style="list-style-type: none">• X-ray beam contains many wavelengths• so low energy X-rays are not absorbed in the body• low energy X-rays can cause harm but do not contribute to the image	B1 B2
11(c)(i)	$I / I_o = e^{-\mu x}$ $e^{-0.23 \times 0.80} = 0.83$ 17% absorbed	C1 A1
11(c)(ii)	bone is seen as lighter / muscle is seen as darker either bone has a higher μ value so absorbs more or muscle has a lower μ value so transmits more	B1 B1

Question	Answer	Marks
12(a)	(minimum) energy required to separate the nucleons to infinity	M1 A1
12(b)(i)	37 2	B1
12(b)(ii)	fission	B1
12(b)(iii)	binding energy per nucleon smaller for U than for Cs	B1
12(c)	Current ratio 2 Y to 1 Zr, so initially 3 Y $2 = 3 e^{-\lambda t}$ $\lambda = 0.693 / 2.7$ $\ln(2 / 3) = -(\ln 2 / 2.7)t$ $t = 1.6$ days or $(\frac{1}{2})^n = 2 / 3$ $n = 0.585$ time $= 0.585 \times 2.7$ $= 1.6$ days	C1 C1 A1 C1 C1 C1 A1