

Cambridge International AS & A Level

PHYSICS
Paper 4 A Level Structured Questions
MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2021 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

© UCLES 2021 [Turn over

xamples of nov	w to apply the list rule						
State three reaso	ons [3]						
A	1. Correct	✓		F	1. Correct	✓	
	2. Correct	✓	2	(4 responses)	2. Correct	✓	2
	3. Wrong	×			3. Correct	×	-
					CON (of 3.)	(discount 3)	
В	1. Correct, Correct	✓, ✓					
(4 responses)	2. Correct	, √	3	G	1. Correct	✓	
` '	3. Wrong	ignore		(5 responses)	2. Correct	✓	1
					3. Correct	✓	3
					Correct	ignore	
С	1. Correct	✓			CON (of 4.)	ignore	
(4 responses)	2. Correct, Wrong	√, ×	2				
	3. Correct	ignore					
				H	1. Correct	✓	
				(4 responses)	2. Correct	×	2
D	1. Correct	✓			3. CON (of 2.)	(discount 2)	_
(4 responses)	2. Correct, CON (of 2.)	×, (discount 2)	2		Correct	✓	
	3. Correct	√					
				1	1. Correct	√	
E	1. Correct	✓		(4 responses)	2. Correct	*	1 .
(4 responses)	2. Correct	✓	3		3. Correct	✓	2
(3. Correct, Wrong	√			CON (of 2.)	(discount 2)	

© UCLES 2021 Page 5 of 19

Abbreviations

I	Alternative and acceptable answers for the same marking point.
()	Bracketed content indicates words which do not need to be explicitly seen to gain credit but which indicate the context for an answer. The context does not need to be seen but if a context is given that is incorrect then the mark should not be awarded.
	Underlined content must be present in answer to award the mark. This means either the exact word or another word that has the same technical meaning.

Mark categories

B marks	These are <u>independent</u> marks, which do not depend on other marks. For a B mark to be awarded, the point to which it refers must be seen specifically in the candidate's answer.
M marks	These are <u>method</u> marks upon which A marks later depend. For an M mark to be awarded, the point to which it refers must be seen specifically in the candidate's answer. If a candidate is not awarded an M mark, then the later A mark cannot be awarded either.
C marks	These are <u>compensatory</u> marks which can be awarded even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known them. For example, if an equation carries a C mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the C mark is awarded. If a correct answer is given to a numerical question, all of the preceding C marks are awarded automatically. It is only necessary to consider each of the C marks in turn when the numerical answer is not correct.
A marks	These are <u>answer</u> marks. They may depend on an M mark or allow a C mark to be awarded by implication.

Annotations

✓	Indicates the point at which a mark has been awarded.
X	Indicates an incorrect answer or a point at which a decision is made not to award a mark.
XP	Indicates a physically incorrect equation ('incorrect physics'). No credit is given for substitution, or subsequent arithmetic, in a physically incorrect equation.
ECF	Indicates 'error carried forward'. Answers to later numerical questions can always be awarded up to full credit provided they are consistent with earlier incorrect answers. Within a section of a numerical question, ECF can be given after AE, TE and POT errors, but not after XP.

© UCLES 2021 Page 6 of 19

AE	Indicates an arithmetic error. Do not allow the mark where the error occurs. Then follow through the working/calculation giving full subsequent ECF if there are no further errors.
РОТ	Indicates a power of ten error. Do not allow the mark where the error occurs. Then follow through the working/calculation giving full subsequent ECF if there are no further errors.
TE	Indicates incorrect transcription of the correct data from the question, a graph, data sheet or a previous answer. For example, the value of 1.6 × 10 ⁻¹⁹ has been written down as 6.1 × 10 ⁻¹⁹ or 1.6 × 10 ¹⁹ . Do not allow the mark where the error occurs. Then follow through the working/calculation giving full subsequent ECF if there are no further errors.
SF	Indicates that the correct answer is seen in the working but the final answer is incorrect as it is expressed to too few significant figures.
BOD	Indicates that a mark is awarded where the candidate provides an answer that is not totally satisfactory, but the examiner feels that sufficient work has been done ('benefit of doubt').
CON	Indicates that a response is contradictory.
I	Indicates parts of a response that have been seen but disregarded as irrelevant.
МО	Indicates where an A category mark has not been awarded due to the M category mark upon which it depends not having previously been awarded.
۸	Indicates where more is needed for a mark to be awarded (what is written is not wrong, but not enough). May also be used to annotate a response space that has been left completely blank.
SEEN	Indicates that a page has been seen.

© UCLES 2021 Page 7 of 19

Question	Answer	Marks
1(a)	(gravitational) force is (directly) proportional to product of masses	B1
	force (between point masses) is inversely proportional to the square of their separation	B1
1(b)	correct read offs from the graph with correct power of ten for R^3	C1
	$M = \frac{4 \times \pi^2 \times 1.2 \times 10^{34}}{6.67 \times 10^{-11} \times 2.4 \times (365 \times 24 \times 3600)^2}$	C1
	$=3.0\times10^{30}\mathrm{kg}$	A1
1(c)(i)	potential energy is zero at infinity	B1
	(gravitational) forces are attractive	B1
	work must be done on the rock to move it to infinity	B1
1(c)(ii)	$\frac{GMm}{r^2} = \frac{mv^2}{r} \qquad OR \qquad v^2 = \frac{GM}{r} \qquad OR \qquad v = \sqrt{\frac{GM}{r}}$	M1
	use of $\frac{1}{2}mv^2$ (e.g. multiplication by $\frac{1}{2}m$) leading to $\frac{GMm}{2r}$	A1
1(c)(iii)	$Ep = \phi m \text{ and } \phi = \frac{-GM}{r} \text{ or } E_p = \frac{-GMm}{r}$	C1
	Total energy = $E_k + E_p$	
	Total energy = $\frac{GMm}{2r} + \frac{-GMm}{r} = \frac{-GMm}{2r}$	A1

© UCLES 2021 Page 8 of 19

Question	Answer	Marks
2(a)(i)	$pV = NkT$ or $pV = nRT$ and $N = nN_A$	C1
	$N = \frac{2.3 \times 10^5 \times 3.5 \times 10^{-3}}{1.38 \times 10^{-23} \times 294}$	
	$= 2.0 \times 10^{23}$	A1
2(a)(ii)	$pV = \frac{1}{3}Nmc^2$	C1
	$c^{2} = \frac{3 \times 2.3 \times 10^{5} \times 3.5 \times 10^{-3}}{2.0 \times 10^{23} \times 40 \times 1.66 \times 10^{-27}}$	
	= 182 000	
	r.m.s. speed = 430 m s^{-1}	
	or	A1
	$\frac{1}{2}mc^2 = \frac{3}{2}kT$	
	$c^2 = \frac{3 \times 1.38 \times 10^{-23} \times 294}{40 \times 1.66 \times 10^{-27}}$	(C1)
	= 183 000	
	$r.m.s.speed = 430 \text{ m s}^{-1}$	(A1)

© UCLES 2021 Page 9 of 19

Question	Answer	Marks
2(b)	$c^{2} = \frac{3 \times 2.0 \times 10^{23} \times 1.38 \times 10^{-23} \times (294 + 84)}{2.0 \times 10^{23} \times 40 \times 1.66 \times 10^{-27}}$	C1
	$c^2 = 236000$	
	c = 485	
	$ratio\left(=\frac{485}{430}\right)=1.1$	A 1
	OR $v \propto \sqrt{T}$ or $v^2 \propto T$	(C1)
	$ratio = \sqrt{\frac{273 + 21 + 84}{273 + 21}} \text{ or } \sqrt{\frac{378}{294}}$	(A1)
	ratio = 1.1	

Question	Answer	Marks
3(a)	Any 2 from:	B2
	 particles / atoms / molecules / ions (very) close together / touching regular, repeating pattern vibrate about a fixed point 	
3(b)	(much) greater increase in spacing of molecules (for vaporisation compared with fusion)	B1
3(c)(i)	–100 °C	B1

© UCLES 2021 Page 10 of 19

Question	Answer	Marks
3(c)(ii)	time = 8.5 – 3.0 = 5.5 min	C1
	Pt = mL	C1
	energy = power \times time = $150 \times 5.5 \times 60$	
	= 49 500 J	
	$L = \frac{E}{m}$	
	$=\frac{49500}{0.045}$	
	$=1100kJkg^{-1}$	A1
3(c)(iii)	gas has a higher specific heat capacity (than liquid)	B1

Question	Answer	Marks
4(a)	acceleration and displacement are in opposite directions	B1
4(b)(i)	F = kx = 8.0×(0.060 - 0.048) or 8.0×(0.060 + 0.048) or 8.0×0.012 or 8.0×0.108	M1
	$\Sigma F = (8.0 \times 0.012) - (8.0 \times 0.108) = 0.77N$ or $\Sigma F = 0.864 - 0.096 = 0.77N$	A1

© UCLES 2021 Page 11 of 19

Question	Answer	Marks
4(b)(ii)	$a = \frac{F}{m}$	A 1
	$=\frac{0.77}{0.25}$	
	$=3.1ms^{-2}$	
4(b)(iii)	$a = -\omega^2 x$ $\omega = \sqrt{\frac{3.1}{0.048}}$ $\omega = 8.04$	C1
	$T=2\pi/\omega$	C1
	$T = 2\pi / 8.04$ = 0.78 s	A 1
4(b)(iv)	(resultant) force halved and distance halved	B1
	same T	B1

Question	Answer	Marks
5(a)(i)	amplitude of the carrier wave varies	M1
	in synchrony with the displacement of the (information) signal	A1
5(a)(ii)	Any 2 from:	B2
	 fewer transmitters needed / each transmitter can cover a greater distance more stations can share waveband transmitters and receivers are cheaper 	

© UCLES 2021 Page 12 of 19

Question	Answer	Marks
5(b)(i)	$\lambda = \frac{V}{c}$	A 1
	<i>t</i> 3.0×10 ⁸	
	$=\frac{3.0\times10^8}{1.5\times10^6}=200m$	
5(b)(ii)	10 kHz	B1
5(c)	1520 kHz	B1

Question	Answer	Marks
6(a)	(both have) radial field lines	B1
6(b)(i)	2.1 cm	B1
6(b)(ii)	$E = \frac{Q}{4\pi\varepsilon_0 r^2}$	C1
	e.g. $r = 2.1$ cm, $E = 1.30 \times 10^5$ V m ⁻¹	
	$Q = 4\pi\varepsilon_{o}r^{2}E$	
	$= 4 \times \pi \times 8.85 \times 10^{-12} \times 0.021^{2} \times 1.30 \times 10^{5}$	
	$=6.4\times10^{-9}C$	A 1

© UCLES 2021 Page 13 of 19

Question	Answer	Marks
6(c)	$C = \frac{Q}{V}$	C1
	either $V = \frac{Q}{4\pi\varepsilon_{o}r}$ leading to $C = 4\pi\varepsilon_{o}r$	
	$C = 4 \times \pi \times 8.85 \times 10^{-12} \times 0.021$	C1
	$(C =) 2.3 \times 10^{-12} \mathrm{F}$	A1
	or	(C1)
	$V = \frac{Q}{4\pi\varepsilon_o r}$	
	$=\frac{6.4\times10^{-9}}{4\times\pi\times8.85\times10^{-12}\times0.021}$	
	= 2740 <i>V</i>	
	$C = \frac{6.4 \times 10^{-9}}{2740}$	
	$=2.3\times10^{-12}$ F	(A1)

© UCLES 2021 Page 14 of 19

Question	Answer	Marks
7(a)(i)	non-inverting (amplifier)	B1
7(a)(ii)	$gain = \frac{R_f}{R} + 1$	B1
	$gain = \frac{3.6}{0.72} + 1 = 6.0$	
7(a)(iii)	straight line from $(0,0)$ to $(T/2, 3)$	B1
	line from origin to 3.0 V then horizontal line at 3.0 V to T	B1
7(a)(iv)	ldr / light dependent resistor replaces one of the two resistors	B1
7(b)(i)	relay coil	B1
7(b)(ii)	relay coil between op-amp and earth	B1
	diode with correct polarity (pointing away from output) connected between output and device and no other connections or diode with correct polarity (pointing towards earth) between device and earth and no other connections	B1
	switch connected to high voltage circuit	B1

Question	Answer	Marks
8(a)(i)	at least one anticlockwise arrow and no clockwise arrows	B1
8(a)(ii)	(force is to the) left	B1
8(a)(iii)	force is the same	B1
	Newton's third law (of motion) or force depends on the product of the two currents	B1

© UCLES 2021 Page 15 of 19

Question	Answer	Marks
8(b)(i)	frequency of radio waves is equal to natural frequency of protons	B1
	resonance of protons occurs / protons absorb energy	B1
8(b)(ii)	in between pulses / when pulse stops	B1
	Any 1 from:	B1
	 protons de-excite protons emit r.f. pulses emitted (r.f.) pulse (from proton) detected 	

Question	Answer	Marks
9(a)	(magnetic) flux density \times area \times number of turns	M1
	area is perpendicular to (magnetic) field	A1
9(b)	use of <i>t</i> = 1.2 s	C1
	$\varepsilon = \frac{\Delta BAN}{\Delta t}$ $= \frac{0.250 \times \pi \times 0.030^2 \times 540}{1.2}$	C1
	=0.32V	A 1
9(c)(i)	light damping	B1

© UCLES 2021 Page 16 of 19

Question	Answer	Marks
9(c)(ii)	sheet cuts (magnetic) flux and causes induced emf	B1
	(induced) emf causes (eddy) currents (in sheet)	B1
	either currents (in sheet) cause resistive force or currents (in sheet) dissipate energy	B1
	smaller currents in Y or larger currents in X, so dashed line is X	B1

Question	Answer	Marks
10(a)	230 ∨	A1
10(b)	$\omega = 100\pi$	C1
	$T = \frac{2\pi}{\omega} = \frac{2\pi}{100\pi}$	
	= 0.020 s	A1
10(c)(i)	half-wave (rectification)	B1
10(c)(ii)	sinusoidal half waves in positive V only or negative V only, peak at 320 V	B1
	line at zero for second half of cycle	B1
	two time periods shown, each of 0.020 s	B1
10(c)(iii)	capacitor added in parallel with resistor	B1

© UCLES 2021 Page 17 of 19

Question	Answer	Marks
11(a)(i)	electrons decelerate (on hitting target) so X-ray photons produced	B1
	range of decelerations	B1
	photon energy depends on (magnitude of) deceleration	B1
11(a)(ii)	$eV = \frac{hc}{\lambda}$	C1
	$\lambda = \frac{6.63 \times 10^{-34} \times 3.0 \times 10^8}{1.6 \times 10^{-19} \times 15000}$	C1
	$=8.3\times10^{-11}m$	A1
	or	(C1)
	$E = hf \text{ and } c = f\lambda \text{ and } \text{ electron energy} = \text{eV}$	
	or $E = hc / \lambda$ and electron energy = eV	
	electron energy = $1.6 \times 10^{-19} \times 15000$ = 2.4×10^{-15}	
	$\lambda = \frac{6.63 \times 10^{-34} \times 3.0 \times 10^8}{2.4 \times 10^{-15}}$	(C1)
	$\lambda = 8.3 \times 10^{-11} m$	(A1)
11(b)(i)	μ = – gradient <i>or</i> ln (I/I_0) = $-\mu x$	C1
	(e.g. 2.08 / 10.0) = 0.21 cm ⁻¹	A1

© UCLES 2021 Page 18 of 19

Question	Answer	Marks
11(b)(ii)	$\ln(0.05) = -\mu x$	C1
	$x = \frac{\ln 0.05}{-\mu}$ e.g. $x = 14 cm$	A1

Question	Answer	Marks
12(a)	1 not affected by external factors	B1
	cannot predict when a (particular) nucleus will decay or cannot predict which nucleus will decay (next)	B1
12(b)(i)	Number of atoms = $\frac{1.0 \times 10^{-9}}{90 \times 1.66 \times 10^{-27}} \text{ or } \frac{1.0 \times 10^{-9} \times 6.02 \times 10^{23}}{90 \times 10^{-3}}$ $= 6.693 \times 10^{15}$	C1
	$\lambda = \frac{5.2 \times 10^6}{6.693 \times 10^{15}}$	C1
	$\lambda = 7.8 \times 10^{-10} \text{ s}^{-1}$	A 1
12(b)(ii)	daughter nucleus is unstable	B1

© UCLES 2021 Page 19 of 19