

Cambridge International AS & A Level

PHYSICS 9702/42
Paper 4 A Level Structured Questions February/March 2022

MARK SCHEME
Maximum Mark: 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the February/March 2022 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

A	1. Correct	✓		F	1. Correct	✓	
	2. Correct	✓	2	(4 responses)	2. Correct	✓	2
	3. Wrong	×			3. Correct CON (of 3.)	(discount 3)	
В	1. Correct, Correct	✓, ✓					
(4 responses)	2. Correct	✓	3	G	1. Correct	✓	
	3. Wrong	ignore		(5 responses)	2. Correct	✓	
	J				3. Correct Correct CON (of 4.)	√ ignore ignore	3
С	1. Correct	✓			CON (01 4.)	ignore	
(4 responses)	2. Correct, Wrong	✓, x	2				
	3. Correct	ignore		Н	1. Correct	✓	
				(4 responses)	2. Correct	×	2
D	1. Correct	✓			3. CON (of 2.) Correct	(discount 2) ✓	
(4 responses)	2. Correct, CON (of 2.)	×, (discount 2)	2			•	1
	3. Correct	✓			1. Correct	√	
				// roononees)	2. Correct	×	\dashv
E	1. Correct	√		(4 responses)		×	2
(4 responses)	2. Correct	√	3		3. Correct CON (of 2.)	(discount 2)	
, , ,	3. Correct, Wrong	√	1		,		

© UCLES 2022 Page 5 of 17

Question	Answer	Marks
1(a)	at least 4 straight radial lines to P	B1
1	all arrows pointing along the lines towards P	B1
1(b)	Any 2 from: gravitational force provides the centripetal force (centripetal or gravitational) force has constant magnitude (centripetal or gravitational) force is perpendicular to velocity (of moon) / direction of motion (of moon)	B2
1(c)(i)	$\frac{GMm}{r^2} = mr\omega^2$ $M = \frac{r^3\omega^2}{G} \text{ and gradient} = r^3\omega^2 \text{ hence } M = \frac{\text{gradient}}{G}$ or $r^3 = GM \times 1/\omega^2 \text{ so gradient} = GM \text{ hence } M = \frac{\text{gradient}}{G}$	M1
1(c)(ii)	$M = 4.1 \times 10^{23} / (6.0 \times 10^7 \times 6.67 \times 10^{-11}) = 1.0 \times 10^{26} \text{ kg}$	B1

© UCLES 2022 Page 6 of 17

Question	Answer	Marks
1(c)(iii)	$\frac{GMm}{r^2} = \frac{mv^2}{r}$	C1
	$\frac{GM}{r} = v^2$	
	$v^2 = \frac{6.67 \times 10^{-11} \times 1.0 \times 10^{26}}{1.2 \times 10^8}$	C1
	$v^2 = 5.6 \times 10^7 \text{m s}^{-1}$	
	$v = 7500 \text{ ms}^{-1}$	A1

Question	Answer	Marks
2(a)	0	B1
2(b)	pV = nRT	C1
	$(n =) 1.5 \times 10^5 \times 4.2 \times 10^{-3} / 8.31 \times 540$	
	= 0.14 mol	A1
2(c)	missing pressure 1.5 (\times 10 ⁵)	B1
	both missing volumes 1.8 (\times 10 ⁻³)	B1
2(d)(i)	$(\Delta U$:) increase in internal energy (of the system)	B1
	(q:) thermal energy supplied to the system	B1
	(W:) work done on system	B1

© UCLES 2022 Page 7 of 17

Question	Answer	Marks
2(d)(ii)	volume increases and work is done by the gas	B1
	temperature decreases and internal energy decreases	B1

Question	Answer	Marks
3(a)	upthrust, weight	B1
3(b)	upthrust greater than weight so (resultant force is) upwards	B1
3(c)(i)	A, g and ρ all constant so $F \propto x$	B1
	minus sign means F and x are in opposite directions	B1
3(c)(ii)	$(a = \frac{F}{m} \text{ so}) a = (-)\frac{Ag\rho x}{m}$	M1
	so $\omega^2 = \frac{Ag\rho}{m}$ hence $\omega = \sqrt{\frac{Ag\rho}{m}}$	A1
3(d)(i)	damping due to viscous forces	B1
3(d)(ii)	$(E =) \frac{1}{2} m\omega^2 x_0^2$	C1
	ω^2 = (–) gradient	C1
	$(E =) \frac{1}{2} m\omega^2 (x_1^2 - x_2^2)$	A1
	$(E =) \frac{1}{2} m\omega^{2} (x_{1}^{2} - x_{2}^{2})$ $= \frac{1}{2} \times 0.57 \times (\frac{2.3}{0.020})(0.020^{2} - 0.016^{2})$	
	$=4.7\times10^{-3} \text{ J}$	

© UCLES 2022 Page 8 of 17

Question	Answer	Marks
4(a)	direction of force	B1
	force on a positive charge	B1
4(b)(i)	$V = \frac{Q}{4\pi\epsilon_{o}r}$	C1
	$\frac{4.0 \times 10^{-9}}{4\pi \varepsilon_{o} x} + \frac{-7.2 \times 10^{-9}}{4\pi \varepsilon_{o} (0.120 - x)} = 0$	
	4(0.120 - x) = 7.2 x	
	x = 0.043 m	A1
4(b)(ii)	fields are in the same direction so no	B1
4(b)(iii)	straight arrow drawn leftwards from X in direction between extended line joining Q and X and the horizontal	B1

© UCLES 2022 Page 9 of 17

Question	Answer	Marks
5(a)	(energy stored =) area under line or ½ QV	C1
	$= \frac{1}{2} \times 8.0 \times 1.2 \times 10^{-4}$	
	= 4.8 × 10 ⁻⁴ J	A1
5(b)(i)	(<i>T</i> =) <i>RC</i>	C1
	$(\tau=) 220 \times 10^3 \times (1.2 \times 10^{-4}/8.0) = 3.3 \text{ s}$	A1
5(b)(ii)	$E \propto V^2$	C1
	(so time to) V _o /3	C1
	$V = V_0 e^{-t/RC}$	
	$\frac{V_{o}}{3} = V_{o} e^{-t/3.3}$	C1
	$\frac{1}{3} = e^{-t/3.3}$	
	t = 3.6 s	A1
5(c)	(total) capacitance is doubled	M1
	time constant is doubled	A1

© UCLES 2022 Page 10 of 17

Question	Answer	Marks
6(a)	less in smaller solenoid	B1
6(b)	greater in smaller solenoid	B1
6(c)(i)	direction of (induced) e.m.f.	M1
	such as to (produce effects that) oppose the change that caused it	A1
6(c)(ii)	change of flux (linkage) in smaller solenoid induces e.m.f. in smaller solenoid	B1
	(induced) current in smaller solenoid causes field around it	B1
	the two fields (interact to) create an attractive force	B1

Question	Answer	Marks
7(a)(i)	two diodes added in correct directions (Both diodes pointing inwards and upwards), correct symbols only	B1
7(a)(ii)	'+' anywhere on upper output wire	B1
7(b)(i)	$\omega = 2\pi / T$ $= 2\pi / 2.5$ $= 0.80 \pi \text{ or } 4\pi / 5 \text{ or } 2.5$	C1
	$(V =)$ 3.5 sin (0.8 π t) or 3.5 sin (4 π t/5) or 3.5 sin (2.5 t)	A1

Question	Answer	Marks
7(b)(ii)	$(P=)\frac{V^2}{2R} \text{ or } (P=)\frac{V_{r.m.s.}^2}{R}$	C1
	$= \frac{3.5^2}{2 \times 12} \text{ or } \frac{2.47^2}{12}$	
	= 0.51 W	A1

Question	Answer	Marks
8(a)	$\lambda = \frac{h}{p}$ or $\lambda = \frac{h}{mv}$	M1
	where h is the Planck constant and p is the momentum (of particle) l	A1
8(b)(i)	(electron) diffraction	B1
8(b)(ii)	moving electrons behave like waves	B1
8(b)(iii)	spacing between atoms ≈ wavelength of electron	B1
	or	
	diameter of atom ≈ wavelength of electron	
8(b)(iv)	Any one of: • wavelength has decreased • electron had greater momentum	M1
	so (accelerating) p.d. was increased	A1

© UCLES 2022 Page 12 of 17

Question	Answer	Marks
9(a)	207, 82 for lead	B1
	4, 2 for alpha	B1
9(b)(i)	(half-life found as) 0.52 s or correctly read points substituted into $N=N_0e^{-\lambda t}$	C1
	$\lambda = \frac{0.693}{t_{\frac{1}{2}}}$	
	$\lambda = \frac{0.693}{0.52}$	
	$\lambda = 1.3 \text{s}^{-1}$	A1
9(b)(ii)	$A=\lambda N$	A1
	$= 1.3 \times 24 \times 10^{12}$	
	$= 3.1 \times 10^{13}$ Bq	
9(b)(iii)	upwards curve of decreasing gradient starting from (0,0)	B1
	passes through (0.52, 12) and (1.2, 18.8)	B1
9(c)(i)	16×10^{12} and 7.2×10^{12}	C1
	$6900 \times 10^{3} \times 1.6 \times 10^{-19}$	C1
	$(16 \times 10^{12} - 7.2 \times 10^{12}) \times 6900 \times 10^{3} \times 1.6 \times 10^{-19}$	
	= 9.7 J	A1

© UCLES 2022 Page 13 of 17

Question	Answer	Marks
9(c)(ii)	lead nuclei have kinetic energy	B1
	or	
	gamma photons are also emitted	

Question	Answer	Marks
10(a)	energy = mc∆T	C1
	energy = ItV	C1
	$(\Delta T =) \frac{0.40 \times 0.020 \times 75\ 000 \times 0.95}{0.015 \times 130}$	
	=290 K	A 1
10(b)	$I = I_o e^{-\mu t}$	C1
	$0.20 = e^{-0.22t}$	
	t = 7.3 cm	A 1

© UCLES 2022 Page 14 of 17

Question	Answer	Marks
10(c)	either	M1
	(linear) attenuation coefficients / μ <u>very</u> different for bone and muscle	
	(very) different amounts (of X-rays) absorbed so good contrast or (very) different intensities transmitted so good contrast	A1
	or	(M1)
	(linear) attenuation coefficients / μ similar for blood and muscle	
	similar amounts (of X-rays) absorbed so poor contrast or similar intensities transmitted so poor contrast	(A1)

Question	Answer	Marks
11(a)	substance containing radioactive nuclei that is introduced into the body <i>or</i> substance containing radioactive nuclei that is absorbed by the tissue being studied	B1
11(b)(i)	a particle interacting with its antiparticle so that mass is converted into energy	B1
11(b)(ii)	electron(s) and positron(s)	B1
11(c)(i)	$E = 2mc^2$	A1
	$= 2 \times 9.11 \times 10^{-31} \times 3.00 \times 10^{-82}$	
	$= 1.64 \times 10^{-13} \text{J}$	

© UCLES 2022 Page 15 of 17

Question	Answer	Marks
11(c)(ii)	$\lambda = \frac{2hc}{E}$	C1
	$=\frac{2\times6.63\times10^{-34}\times3.00\times10^8}{1.64\times10^{-13}}$	
	$= 2.43 \times 10^{-12} \text{ m}$	A1
11(d)	Any 3 from: the two gamma photons travel in opposite directions gamma photons detected (outside body / by detectors) gamma photons arrive (at detector) at different times determine location of production (of gamma) image of tracer concentration in tissue produced	В3

Question	Answer	Marks
12(a)	total power of radiation emitted (by the star)	B1
12(b)	$F = \frac{L}{4\pi d^2}$ $= \frac{3.83 \times 10^{26}}{4 \times \pi \times 1.51 \times 10^{112}}$	C1
	$= 1340 \text{ W m}^{-2}$	A 1

© UCLES 2022 Page 16 of 17

Question	Answer	Marks
12(c)	$m = \frac{E}{c^2}$	A1
	$=\frac{3.83\times10^{26}}{3.00\times10^{82}}$	
	$= 4.26 \times 10^9 \text{ kg}$	
12(d)	$L = 4\pi\sigma r^2 T^4$	B1
	$3.83 \times 10^{26} = 4 \times \pi \times 5.67 \times 10^{-8} \times 6.96 \times 10^{82} \times T^4$ leading to T = 5770 K	
12(e)	$\lambda_{(max)} \propto \frac{1}{T}$	C1
	$\frac{5.00 \times 10^{-7}}{\lambda} = \frac{9940}{5770}$	
	$\lambda = 2.90 \times~10^{-7} \text{m}$	A1

© UCLES 2022 Page 17 of 17