

Cambridge International AS & A Level

PHYSICS
Paper 4 A Level Structured Questions

MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the February/March 2023 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

© UCLES 2023 [Turn over

Abbreviations

1		Alternative and acceptable answers for the same marking point.
())	Bracketed content indicates words which do not need to be explicitly seen to gain credit but which indicate the context for an answer. The context does not need to be seen but if a context is given that is incorrect then the mark should not be awarded.
	_	Underlined content must be present in answer to award the mark. This means either the exact word or another word that has the same technical meaning.

Mark categories

B marks	These are <u>independent</u> marks, which do not depend on other marks. For a B mark to be awarded, the point to which it refers must be seen specifically in the candidate's answer.
M marks These are method marks upon which A marks later depend. For an M mark to be awarded, the point to which it refers must specifically in the candidate's answer. If a candidate is not awarded an M mark, then the later A mark cannot be awarded	
C marks	These are <u>compensatory</u> marks which can be awarded even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known them. For example, if an equation carries a C mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the C mark is awarded.
	If a correct answer is given to a numerical question, all of the preceding C marks are awarded automatically. It is only necessary to consider each of the C marks in turn when the numerical answer is not correct.
A marks	These are answer marks. They may depend on an M mark or allow a C mark to be awarded by implication.

© UCLES 2023 Page 5 of 18

Question	Answer	Marks
1(a)	work done per unit mass	B1
	work (done on mass) moving mass from infinity (to the point)	B1
1(b)(i)	$-3.55 \times 10^7 \mathrm{Jkg^{-1}}$	B1
1(b)(ii)	$\phi = -\frac{GM}{r}$	B1
	$M = -\frac{-3.55 \times 10^7 \times 4800000}{6.67 \times 10^{-11}}$	
	$= 2.55 \times 10^{24} \mathrm{kg}$	
1(b)(iii)	$g = \frac{GM}{r^2} \qquad \qquad \text{or} g = -\frac{\phi}{r}$	C1
	$= \frac{6.67 \times 10^{-11} \times 2.55 \times 10^{24}}{4800000^2} \text{or} = \frac{3.55 \times 10^7}{4800000}$	A1
	$= 7.4 \mathrm{Nkg^{-1}}$	
1(b)(iv)	r in range 2.60×10^7 to 2.65×10^7 m	C1
	$\frac{mv^2}{r} = \frac{GMm}{r^2}$ and $v = \frac{2\pi r}{T}$ or $mr\omega^2 = \frac{GMm}{r^2}$ and $\omega = \frac{2\pi}{T}$	C1
	$T^{2} = \frac{4\pi^{2}r^{3}}{GM} = \frac{4\pi^{2} \times (2.65 \times 10^{7})^{3}}{6.67 \times 10^{-11} \times 2.55 \times 10^{24}} = 4.20 \times 10^{9}$	C1
	T = 64 800 s	A1
	= 18 hours	

Question	Answer	Marks
1(c)	similarity – any one point from inversely proportional to distance (from point) points of equal potential lie on concentric spheres zero at infinite distance	B1
	difference – any one point from • gravitational potential is (always) negative • electric potential can be positive or negative	B1

Question	Answer	Marks
2(a)	gas for which $pV \propto T$	M1
	where <i>T</i> is thermodynamic temperature	A1
2(b)(i)	evidence of two temperature conversions between °C and K	B1
	two calculations shown, one for each state e.g.	A1
	$\frac{1.10 \times 10^5 \times 540 \times 10^{-6}}{\left(273 + 27\right)} = 0.198 \text{ and } \frac{6.70 \times 10^6 \times 30 \times 10^{-6}}{\left(273 + 742\right)} = 0.198$	
2(b)(ii)	work is done on the gas	M1
	internal energy increases (so temperature increases)	A1

© UCLES 2023 Page 7 of 18

Question	Answer	Marks
2(b)(iii)	pV = NkT e.g.	C1
	$N = \frac{1.10 \times 10^5 \times 540 \times 10^{-6}}{1.38 \times 10^{-23} \times 300}$	
	$= 1.435 \times 10^{22}$	
	$\Delta E_{k} = (3/2) \ k\Delta TN$	
	$= (3/2) \times 1.38 \times 10^{23} \times (742 - 27) \times \frac{1.10 \times 10^5 \times 540 \times 10^{-6}}{1.38 \times 10^{-23} \times 300}$	C1
	= 212 J	A1
2(c)	$E = mc\Delta\theta$ and $E = mL$	C1
	$\Delta\theta$ = (27 + 196) or 223	C1
	E= 0.0240 × 1.04 × (27 + 196) + 0.0240 × 199	A1
	= 10.3 kJ	

© UCLES 2023 Page 8 of 18

Question	Answer	Marks
3(a)	P: total energy Q: potential energy R: kinetic energy	B2
3(b)	$E = \frac{1}{2}m\omega^2 x_0^2$ or $E = \frac{1}{2}mv_0^2$ and $v_0 = \omega x_0$	C1
	$6.4 \times 10^{-3} = \frac{1}{2} \times 0.130 \times \omega^2 \times 0.015^2$ $(\omega^2 = 438)$ $(\omega = 20.9)$	C1
	$T=2\pi/\omega$	C1
	$= 2\pi/20.9$ = 0.30 s	A1
3(c)(i)	resistive forces	B1
3(c)(ii)	0.92 ⁶	C1
	decrease in energy = $6.4 - (6.4 \times 0.92^{6})$ = 2.5mJ	A1
3(c)(iii)	light damping because the amplitude of oscillations gradually reduces or light damping because the system still oscillates	B1

© UCLES 2023 Page 9 of 18

Answer	Marks
(electric) force is (directly) proportional to product of charges	B1
force (between point charges) is inversely proportional to the square of their separation	B1
arrows showing tension upwards in direction of string, electric force horizontally to the right and weight vertically downwards and all three labelled	B1
$F_{E} = \frac{96 \times 10^{-9} \times 64 \times 10^{-9}}{4 \times \pi \times 8.85 \times 10^{-12} \times 0.080^{2}}$ $(= 8.63 \times 10^{-3} \text{ N})$	C1
either angle to vertical $= \sin^{-1} 0.080/1.2$ (= 3.82°)	C1
weight = F_E / tan 3.82 = 8.63 × 10 ⁻³ / tan 3.82	C1
mass = 0.129/9.81	A1
or $T \sin \theta = mg$ and $T \cos \theta = F_E$ or $\tan \theta = mg/F_E$	(C1)
$\tan \theta = 1.2/0.080$	(C1)
$m = (1.2 \times 8.63 \times 10^{-3}) / (0.080 \times 9.81)$	(A1)
	(electric) force is (directly) proportional to product of charges force (between point charges) is inversely proportional to the square of their separation arrows showing tension upwards in direction of string, electric force horizontally to the right and weight vertically downwards and all three labelled $F_{\rm E} = \frac{96 \times 10^{-9} \times 64 \times 10^{-9}}{4 \times \pi \times 8.85 \times 10^{-12} \times 0.080^2}$ (= 8.63×10^{-3} N) either angle to vertical = $\sin^{-1} 0.080/1.2$ (= 3.82°) weight = $F_{\rm E}/\tan 3.82 = 8.63 \times 10^{-3}/\tan 3.82$ (= 0.129 N) mass = $0.129/9.81$ = 0.013 kg or $T \sin \theta = mg$ and $T \cos \theta = F_{\rm E}$ or $\tan \theta = mg/F_{\rm E}$ $\tan \theta = 1.2/0.080$

© UCLES 2023 Page 10 of 18

Question	Answer	Marks
4(b)(iii)	$E_p = \frac{Q_1 Q_2}{4\pi\varepsilon_0 r} = \frac{96 \times 10^{-9} \times 64 \times 10^{-9}}{4 \times \pi \times 8.85 \times 10^{-12} \times 0.080}$	A1
	$= 6.9 \times 10^{-4} \text{ J}$	
4(c)(i)	towards the top of the page / towards plate P	B1
4(c)(ii)	F = QE and $E = V/d$	C1
	$F = 1.6 \times 10^{-19} \times 250 / 0.018$	A 1
	$= 2.2 \times 10^{-15} \mathrm{N}$	
4(c)(iii)	either the force is not (always) perpendicular to the velocity	B1
	or the force is always in the same direction	

© UCLES 2023 Page 11 of 18

Question	Answer	Marks
5(a)	from graph In $Q = 2.9$	B1
	(so $Q = 18.2 \mu\text{C}$)	
	C = Q/V	C1
	$= 18.2 / 12 = 1.5 \mu\text{F}$	A 1
5(b)	gradient = -0.25	C1
	gradient = -1 / RC	C1
	$R = 1/(0.25 \times 1.5 \times 10^{-6})$	A 1
	$=2.7\times10^{6}\Omega$	
	or $\frac{Q}{Q_0} = e^{-t/CR}$ or $\ln Q - \ln Q_0 = \frac{-t}{CR}$	(C1)
	e.g. $\frac{4.95}{18.2} = e^{\frac{-5.2}{(1.5 \times 10^{-6}R)}}$ or $1.6 - 2.9 = 5.2 / (1.5 \times 10^{-6}R)$	(C1)
	$R = 2.7 \times 10^6 \Omega$	(A1)

Question	Answer	Marks
5(c)	$W = \frac{1}{2} QV$	C1
	$= \frac{1}{2} \times 18.2 \times 10^{-6} \times 12$	A1
	= 1.1 × 10⁻4 J	
	or $W = \frac{1}{2} CV^2$	(C1)
	$= \frac{1}{2} \times 1.5 \times 10^{-6} \times 12^{2}$	(A1)
	$= 1.1 \times 10^{-4} \mathrm{J}$	
	or $W = \frac{1}{2} Q^2 / C$	(C1)
	$= \frac{1}{2} \times (18.2 \times 10^{-6})^2 / 1.5 \times 10^{-6}$	(A1)
	$= 1.1 \times 10^{-4} \mathrm{J}$	
5(d)	straight line with different negative gradient starting from (0, 2.9)	M1
	straight line between $t = 0$ and at least $t = 5.0$ s with twice the gradient of the original line	A1

Question	Answer	Marks
6(a)	it is zero when (plane of) probe is parallel to the (magnetic) field (lines)	B1
	it is maximum when (plane of) probe is perpendicular to (magnetic) field (lines)	B1
6(b)(i)	number density of charge carriers	B1
6(b)(ii)	smaller value of n so greater Hall voltage / $V_{\rm H}$	B1
6(c)	(36 mV corresponds to) 48 mT	C1
	use of 1.4 s or (8.6 – 7.2) s	C1
	$E = \Delta BAN/\Delta t$	C1
	$= \frac{48 \times 10^{-3} \times 0.018^{2} \times \pi \times 780}{1.4}$ $= 0.027 \text{ V}$	A1

Question	Answer	Marks
7(a)	photon absorbed (by electron) and electron excited	B1
	photon energy equal to difference in (energy of two) energy levels	B1
	photon energy relates to a single wavelength / single frequency	B1
	electron de-excites and emits photon in any direction	B1
7(b)	$\frac{hc}{\lambda} = \Delta E$	C1
	uses 658nm	C1
	$\frac{6.63\times10^{-34}\times3.00\times10^8}{658\times10^{-9}} = - E_1 - (-3.40\times1.60\times10^{-19})$	A1
	$E_1 = -2.42 \times 10^{-19} \text{J}$	

© UCLES 2023 Page 15 of 18

Question	Answer	Marks
8(a)	234, 92 for the uranium nucleus	B1
	4, 2 for the alpha particle	B1
8(b)(i)	$N_0 = 0.874/(238 \times 1.66 \times 10^{-27})$	A1
	$= 2.21 \times 10^{24}$	
8(b)(ii)	$A = \lambda N$	C1
	$= \frac{\ln 2}{87.7 \times 365 \times 24 \times 3600} \times 2.21 \times 10^{24}$	A1
	$= 5.54 \times 10^{14} \mathrm{Bq}$	
8(b)(iii)	power = $5.54 \times 10^{14} \times 5.59 \times 10^{6} \times 1.60 \times 10^{-19}$	C1
	= 496 W	A1
8(b)(iv)	$65.3 = 100e^{-\frac{\ln 2}{87.7}t}$	C1
	$\ln 0.653 = -(\ln 2/87.7) t$	A1
	t = 53.9 years	
8(c)	advantage: less mass so less energy needed to launch probe	B1
	disadvantage: half-life shorter so will not provide power for as long	B1

© UCLES 2023 Page 16 of 18

Question	Answer	Marks
9(a)	piezo-electric crystal	B1
	(ultrasound) wave causes shape change / vibrations (of crystal)	B1
	shape change / vibrations causes e.m.f. (which is detected)	B1
9(b)(i)	93 V	A1
9(b)(ii)	$2.7 \times 10^{7} \text{rad s}^{-1}$	A1
9(c)(i)	$kgm^{-2}s^{-1}$	B1
9(c)(ii)	$\rho = Z/c = 1.7 \times 10^6/1600$	A1
	$= 1100 \mathrm{kg}\mathrm{m}^{-3}$	
9(c)(iii)	intensity reflection coefficient \approx 1 or Z_1 and Z_2 are very different	B1
	almost no / no ultrasound transmitted (into air filled cavity)	B1

Question	Answer	Marks
10(a)	brighter star could be closer (to Earth)	B1
	brighter star could have a greater luminosity (in the visible wavelengths)	B1
10(b)	object with known luminosity	B1
10(c)(i)	$\frac{660.9 - 656.3}{656.3} \approx \frac{v}{3.0 \times 10^8} \text{ leading to } 2.1 \times 10^6 \text{m s}^{-1}$	B1
10(c)(ii)	$v = H_0 d$	C1
	$d = 2.1 \times 10^6 / 2.3 \times 10^{-18}$	A1
	$= 9.1 \times 1023 \mathrm{m}$	
10(c)(iii)	wavelength has increased / light is redshifted	B1
	star within galaxy is moving away / receding (from Earth)	B1
	Universe is expanding	B1