

Cambridge International AS & A Level

PHYSICS 9702/42

Paper 4 A Level Structured Questions

May/June 2022

MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2022 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Abbreviations

1	Alternative and acceptable answers for the same marking point.
()	Bracketed content indicates words which do not need to be explicitly seen to gain credit but which indicate the context for an answer. The context does not need to be seen but if a context is given that is incorrect then the mark should not be awarded.
	Underlined content must be present in answer to award the mark. This means either the exact word or another word that has the same technical meaning.

Mark categories

B marks	These are <u>independent</u> marks, which do not depend on other marks. For a B mark to be awarded, the point to which it refers must be seen specifically in the candidate's answer.
M marks	These are method marks upon which A marks later depend. For an M mark to be awarded, the point to which it refers must be seen specifically in the candidate's answer. If a candidate is not awarded an M mark, then the later A mark cannot be awarded either.
C marks	These are <u>compensatory</u> marks which can be awarded even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known them. For example, if an equation carries a C mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the C mark is awarded. If a correct answer is given to a numerical question, all of the preceding C marks are awarded automatically. It is only necessary to consider each of the C marks in turn when the numerical answer is not correct.
A marks	These are <u>answer</u> marks. They may depend on an M mark or allow a C mark to be awarded by implication.

Annotations

✓	Indicates the point at which a mark has been awarded.
X	Indicates an incorrect answer or a point at which a decision is made not to award a mark.
XP	Indicates a physically incorrect equation ('incorrect physics'). No credit is given for substitution, or subsequent arithmetic, in a physically incorrect equation.

© UCLES 2022 Page 5 of 16

ECF	Indicates 'error carried forward'. Answers to later numerical questions can always be awarded up to full credit provided they are consistent with earlier incorrect answers. Within a section of a numerical question, ECF can be given after AE, TE and POT errors, but not after XP.
AE	Indicates an arithmetic error. Do not allow the mark where the error occurs. Then follow through the working/calculation giving full subsequent ECF if there are no further errors.
POT	Indicates a power of ten error. Do not allow the mark where the error occurs. Then follow through the working/calculation giving full subsequent ECF if there are no further errors.
TE	Indicates incorrect transcription of the correct data from the question, a graph, data sheet or a previous answer. For example, the value of 1.6×10^{-19} has been written down as 6.1×10^{-19} or 1.6×10^{19} . Do not allow the mark where the error occurs. Then follow through the working/calculation giving full subsequent ECF if there are no further errors.
SF	Indicates that the correct answer is seen in the working but the final answer is incorrect as it is expressed to too few significant figures.
BOD	Indicates that a mark is awarded where the candidate provides an answer that is not totally satisfactory, but the examiner feels that sufficient work has been done ('benefit of doubt').
CON	Indicates that a response is contradictory.
ı	Indicates parts of a response that have been seen but disregarded as irrelevant.
МО	Indicates where an A category mark has not been awarded due to the M category mark upon which it depends not having previously been awarded.
۸	Indicates where more is needed for a mark to be awarded (what is written is not wrong, but not enough). May also be used to annotate a response space that has been left completely blank.
SEEN	Indicates that a page has been seen.

© UCLES 2022 Page 6 of 16

Question	Answer	Marks
1(a)(i)	work (done) per unit mass	B1
	work (done on mass) in moving mass from infinity (to the point)	B1
1(a)(ii)	$E_{P} = \phi m$	B1
	$E_P = (-GM/r) \times m = -GMm/r$ or $\phi = -GM/r$ and $E_P = \phi m = -GMm/r$	
1(b)(i)	$\Delta E_{P} = 6.67 \times 10^{-11} \times 1.99 \times 10^{30} \times 2.20 \times 10^{14} \times [1/(6.38 \times 10^{10}) - 1/(8.44 \times 10^{11})]$	C1
	$= 4.23 \times 10^{23} \mathrm{J}$	A1
1(b)(ii)	(gravitational) force is attractive so decrease or (gravitational) force does work so decrease	B1
1(b)(iii)	$\Delta E_{\rm P} = \frac{1}{2} m (v_2^2 - v_1^2)$	C1
	$4.23 \times 10^{23} = \frac{1}{2} \times 2.20 \times 10^{14} \times (v^2 - 34100^2)$	C1
	$v = 70800 \mathrm{m s^{-1}} = 70.8 \mathrm{km s^{-1}}$	A1
1(c)	both PE and KE equations include <i>m</i> , so path is unchanged	B1

© UCLES 2022 Page 7 of 16

Question	Answer	Marks
2(a)	(electric) force is (directly) proportional to product of charges	B1
	force (between point charges) is inversely proportional to the square of their separation	B1
2(b)(i)	(electric) force is perpendicular to velocity (of particles)	B1
	force (perpendicular to velocity) causes centripetal acceleration or force does not change the speed of the particles or force has constant magnitude	B1
2(b)(ii)	$F = e^2 / 4\pi \varepsilon_0 x^2$	C1
	= $(1.60 \times 10^{-19})^2 / [4\pi \times 8.85 \times 10^{-12} \times (2 \times 1.59 \times 10^{-10})^2]$ = 2.28×10^{-9} N	A1
2(b)(iii)	$F = mr\omega^2$ and $\omega = 2\pi/T$ or $F = mv^2/r$ and $v = 2\pi r/T$	C1
	$F = 4\pi^2 mr / T^2$ $T = \sqrt{[4\pi^2 \times 9.11 \times 10^{-31} \times 1.59 \times 10^{-10} / (2.28 \times 10^{-9})]}$	C1
	$= 1.58 \times 10^{-15} \mathrm{s}$	A1
2(c)(i)	 electron and positron interact positron is anti-particle of electron (pair) annihilation occurs Any two points, 1 mark each 	B2
	mass of the electron and positron converted into photon energy	B1
2(c)(ii)	PET scanning	B1

© UCLES 2022 Page 8 of 16

Question	Answer	Marks
3(a)	(thermal) energy per unit mass	B1
	energy to change state between liquid and gas at constant temperature	B1
3(b)(i)	$q = mL = 0.37 \times 2.3 \times 10^6$	A1
	$= 8.5 \times 10^5 \mathrm{J}$	
3(b)(ii)	pV = nRT and $T = 373$ K	C1
	n = 370 / 18	C1
	$V = [(370 / 18) \times 8.31 \times 373] / (1.0 \times 10^5) = 0.64 \text{ m}^3$	A1
3(b)(iii)	$W = p\Delta V$	C1
	$= 1.0 \times 10^5 \times 0.64$	A1
	$= 6.4 \times 10^4 \mathrm{J}$	
3(b)(iv)	(water does work against atmosphere so) work done on water is negative	B1
	increase in internal energy = $(8.5-0.64) \times 10^5 = 7.9 \times 10^5 J$	A1
3(c)	valid reasoning of how work done by water is affected	M1
	correct use of first law to draw conclusion about effect on specific latent heat that is consistent with work done	A1

© UCLES 2022 Page 9 of 16

Question	Answer	Marks
4(a)	oscillations (of object) at maximum amplitude	B1
	when driving frequency equals natural frequency (of object)	B1
4(b)(i)	$T = 2\pi / \omega$	C1
	$=2\pi/5.0\pi$	A1
	= 0.40 s	
4(b)(ii)	displacement scale labelled -1.0, -0.5, (0), 0.5, 1.0 on the 2 cm tick marks	B1
	t scale labelled 0.2, 0.4, 0.6, 0.8, 1.0, 1.2 on the 2 cm tick marks	B1
4(b)(iii)	$\phi = 2\pi \Delta t / T$	C1
	= $2\pi \times 0.10 / 0.40$ or $2\pi \times 0.30 / 0.40$	
	= 1.6 rad or 4.7 rad	A1

© UCLES 2022 Page 10 of 16

Question	Answer	Marks
5(a)	charge / potential (difference)	M1
	charge is charge on one plate, <u>and</u> potential is p.d. across the plates	A1
5(b)	p.d. across both capacitors = E	B1
	$Q_{T} = Q_1 + Q_2$	B1
	$C_TE = C_1E + C_2E$ hence $C_T = C_1 + C_2$	B1
5(c)(i)	$[(1/22) + (1/47)]^{-1} = 15 \mu\text{F}$	A1
5(c)(ii)	energy = ½CV ²	C1
	$= \frac{1}{2} \times 15 \times 10^{-6} \times 12^{2}$	A1
	$= 1.1 \times 10^{-3} \mathrm{J}$	
5(c)(iii)	initial p.d. (across 22 μ F) = 12 × (15 / 22)	C1
	= 8.2 V	
	or	
	final p.d. across both capacitors = $6.0 \times (22/15)$	
	= 8.8 V	
	$V = V_0 \exp \left[-t/(2.7 \times 10^6 \times 15 \times 10^{-6})\right]$	C1
	$6.0 = 8.2 \exp \left[-t/(2.7 \times 10^6 \times 15 \times 10^{-6})\right]$	A1
	or $8.8 = 12 \exp \left[-t/(2.7 \times 10^6 \times 15 \times 10^{-6})\right]$	
	t = 13 s	

© UCLES 2022 Page 11 of 16

Question	Answer	Marks
6(a)	there must be a current (in the wire)	B1
	(wire) must be at a non-zero angle to the magnetic field	B1
6(b)(i)	arrow from X pointing horizontally to the left	B1
	arrow from Y pointing diagonally upwards and to the left at about 45°	B1
	arrow from Z pointing horizontally to the right	B1
6(b)(ii)	(flux densities at W and X are approximately) equal	B1
	(flux density at) Y greater than (flux density at) Z	B1
6(c)	current in wire creates magnetic field around wire	B1
	(each) wire sits in the magnetic field created by the other	B1
	(for each wire,) current / wire is perpendicular to magnetic field (due to other wire), (so) experiences a (magnetic) force	B1

© UCLES 2022 Page 12 of 16

Question	Answer	Marks
7(a)	induced e.m.f. is (directly) proportional to rate	M1
	of change of (magnetic) flux (linkage)	A1
7(b)	V_2 stepped, all at non-zero values, between $t=0$ and $t=0.40$ s	B1
	V_2 shown with same non-zero magnitude up to $t = 0.15$ s and after $t = 0.25$ s but with a different magnitude between these times	B1
	V_2 shown with a magnitude between $t = 0.15$ s and $t = 0.25$ s that is three times the magnitude before $t = 0.15$ s and after $t = 0.25$ s	B1
	V_2 shown with same sign up to $t = 0.15$ s and after $t = 0.25$ s, and opposite sign in between	B1
7(c)(i)	changing current in coil causes changing (magnetic) field	B1
	or changing (magnetic) flux causes induced e.m.f. in ring	
	induced e.m.f. in ring causes current in ring	B1
	(magnetic) field due to (induced) current in ring interacts with (coil's) field to cause upwards force (on ring)	B1
	or (induced) current in ring perpendicular to (coil's magnetic) field causes upwards force (on ring)	
7(c)(ii)	both magnetic fields reverse direction so ring still jumps up	B1
	or current (in ring) and (coil's) field both reverse so ring still jumps up	

© UCLES 2022 Page 13 of 16

Question	Answer	Marks
8(a)(i)	photoelectric effect	B1
8(a)(ii)	electron diffraction	В1
8(b)(i)	$\lambda = h/p$	C1
	$p = 4 \times 1.66 \times 10^{-27} \times 6.2 \times 10^{7}$	C1
	$(= 4.1 \times 10^{-19} \mathrm{N} \mathrm{s})$	
	$\lambda = 6.63 \times 10^{-34} / 4.1 \times 10^{-19}$	A 1
	$= 1.6 \times 10^{-15} \mathrm{m}$	
8(b)(ii)	line with negative gradient throughout	В1
	curve asymptotic to both axes with non-zero λ at $v = 6.2 \times 10^7 \mathrm{ms^{-1}}$	B1
8(c)	(de Broglie) wavelength negligible compared with width of doorway	B1

© UCLES 2022 Page 14 of 16

Question	Answer	Marks
9(a)(i)	speed is (directly) proportional to distance	M1
	where speed is speed of recession of galaxy (from observer) and distance is distance of galaxy away from observer	A1
9(a)(ii)	wavelengths (of spectral lines) are greater (than their known values)	B1
	redshift shows stars (in distant galaxies) moving away from Earth	B1
9(b)	(all) parts of Universe moving away from each other	B1
	more distant objects are moving away faster	B1
	matter must have been close together / very dense in the past	B1

© UCLES 2022 Page 15 of 16

Question	Answer	Marks
10(a)	spontaneous emission of (ionising) radiation	B1
	emission from unstable nucleus	B1
10(b)(i)	curve with decreasing negative gradient passing through $(0, N_0)$	B1
	curve passing through $(T, 0.5N_0)$	B1
	curve passing through $(2T, 0.25N_0)$ and $(3T, 0.125N_0)$	B1
10(b)(ii)	line through origin with positive gradient	B1
	straight line passing through (N_0 , A_0)	B1
10(c)(i)	activity	B1
10(c)(ii)	decay constant	B1
10(d)	$N = N_0 \exp(-\ln 2 \times 1.70T/T)$	C1
	$N/N_0 = 0.31$	A1

© UCLES 2022 Page 16 of 16