

Cambridge International AS & A Level

PHYSICS

9702/35

Paper 3 Advanced Practical Skills 1

May/June 2023

MARK SCHEME

Maximum Mark: 40

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

This document consists of **10** printed pages.

6 Calculation specific guidance

Correct answers to calculations should be given full credit even if there is no working or incorrect working, **unless** the question states 'show your working'.

For questions in which the number of significant figures required is not stated, credit should be awarded for correct answers when rounded by the examiner to the number of significant figures given in the mark scheme. This may not apply to measured values.

For answers given in standard form (e.g. $a \times 10^n$) in which the convention of restricting the value of the coefficient (a) to a value between 1 and 10 is not followed, credit may still be awarded if the answer can be converted to the answer given in the mark scheme.

Unless a separate mark is given for a unit, a missing or incorrect unit will normally mean that the final calculation mark is not awarded. Exceptions to this general principle will be noted in the mark scheme.

7 Guidance for chemical equations

Multiples / fractions of coefficients used in chemical equations are acceptable unless stated otherwise in the mark scheme.

State symbols given in an equation should be ignored unless asked for in the question or stated otherwise in the mark scheme.

Question	Answer	Marks
1(a)	Value of raw I_1 to the nearest 0.1 mA with unit and in range 0–1.0 A.	1
1(b)	Value of I_2 and $I_2 < I_1$.	1
1(c)	<p>Six sets of readings of w (different values), I_1 and I_2 with correct trend (as w increases I_1 and I_2 decrease) and without help from the Supervisor scores 5 marks, four sets scores 4 marks etc.</p> <p>Range: $w_{\min} \leq 60.0 \text{ cm}$ and $w_{\max} \geq 90.0 \text{ cm}$.</p> <p>Column headings: Each column heading must contain a quantity and a unit where appropriate. The presentation of quantity and unit conforms to accepted scientific convention e.g. I_1I_2 / mA^2 and $1 / w / \text{cm}^{-1}$.</p> <p>Consistency: All values of w must be given to the nearest millimetre.</p> <p>Calculation: Correct calculation of I_1I_2.</p> <p>Significant figures: Values of I_1I_2 must be given to the same number of s.f. as (or one more than) the least number of significant figures in I_1 or I_2.</p>	5

Question	Answer	Marks
1(d)(i)	<p>Axes: Axes must be labelled with the correct quantities. Scales must be chosen so that the plotted points occupy at least half the graph grid in both x and y directions. Scale markings are no more than 2 cm apart (one large square). Sensible scales must be used. Scale must not be awkward (e.g. 3:10 or fractions).</p>	1
	<p>Plotting of points: All observations in the table must be plotted on the grid. Diameter of plotted points must be less than half a small square. Points must be plotted to an accuracy of half a small square in both x and y directions.</p>	1
	<p>Quality: Trend of points must be positive. All points in the table must be plotted on the grid. It must be possible to draw a straight line that is within $\pm 0.05 \text{ m}^{-1}$ (to scale) on the $1 / w$ axis of all plotted points.</p>	1
1(d)(ii)	<p>Line of best fit: 'Best fit' is judged by balance of all points on the grid (at least 5 points) about the candidate's line. There must be an even distribution of points either side of the line along the full length. Lines must not be kinked or thicker than half a small square. Some candidates may choose to identify an anomalous point. If they identify one point as anomalous (e.g. by circling or labelling) then this point is to be disregarded when judging the line of best fit. There must be at least 5 points left after the anomalous point is disregarded.</p>	1
1(d)(iii)	<p>Gradient: The hypotenuse of the triangle used should be greater than half the length of the drawn line. Both read-offs must be accurate to half a small square in both x and y directions. The method of calculation must be correct, not $\Delta x / \Delta y$. The gradient sign on the answer line must be consistent with the graph drawn.</p>	1
	<p><i>y</i>-intercept: Intercept read directly from the graph, with read-off at $1 / w = 0$, accurate to half a small square in <i>y</i> direction. or Correct read-off from a point on the line and substituted correctly into $y = mx + c$ or an equivalent expression. Read-off is accurate to half a small square in both x and y directions.</p>	1

Question	Answer	Marks
1(e)	<p>Value of P = candidate's gradient and value of Q = candidate's intercept. Values must not be written as fractions or given to only one significant figure.</p>	1
	<p>Units for P consistent with readings: $mA^2 \text{ cm}$, $mA^2 \text{ m}$, $A^2 \text{ cm}$ or $A^2 \text{ m}$ and units for Q: mA^2 or A^2.</p>	1

Question	Answer	Marks
2(a)(i)	Value of (raw) D to the nearest mm and (final) value in the range 6.5–7.5 cm with unit.	1
2(a)(ii)	Percentage uncertainty in D based on absolute uncertainty in the range 2–5 mm. Correct method of calculation to find percentage uncertainty (e.g. absolute uncertainty / value from (a)(i)) $\times 100$. If repeated readings have been taken, then the uncertainty can be half the range (but not zero) provided the working is clearly shown.	1
2(b)	Value of T_1 in the range 1.2–1.6 s with unit.	1
	Repeats: at least two measurements of nT where $n \geq 5$.	1
2(c)(i)	Value of T_2 and $T_2 < T_1$.	1
2(c)(ii)	Correct calculation of $(T_1 - T_2)$.	1
2(d)	Second values of L and D .	1
	Second values of T_1 and T_2 .	1
	Second value of $(T_1 - T_2) >$ first value of $(T_1 - T_2)$.	1
2(e)(i)	Two values of k calculated correctly. The final k values must not be written as fractions or given to only one significant figure.	1
2(e)(ii)	Justification for significant figures in k linked to significant figures in $(T_1 - T_2)$, D and L .	1
2(f)	Calculation of percentage difference between candidate's two k values. Comparison of percentage difference with 10% leading to a consistent conclusion.	1

Question	Answer	Marks
2(g)(i)	<p>A Two readings are not enough to draw a (valid) conclusion (not “not enough for accurate results”, “few readings”).</p> <p>B Difficult to measure D with reason e.g. parallax/shape of jar.</p> <p>C Difficult to set or measure L with reason e.g. locating centre of bob/parallax/bob moves when touched by rule/rule moves/rule not vertical/string slipping through cork.</p> <p>D Large percentage uncertainty in $(T_1 - T_2)$ or large uncertainty in $(T_1 - T_2)$ because T_1 and T_2 are similar or change in $(T_1 - T_2)$ is small.</p> <p>E Difficult to measure nT with reason e.g. judge start/end of oscillation/complete oscillation.</p> <p>F Difficulty with practical setup e.g. clamping cylinder in right position/ensuring adhesive putty is at the top.</p> <p><i>1 mark for each point up to a maximum of 4.</i></p>	4
2(g)(ii)	<p>A Take more readings (for different values of x) <u>and</u> plot a graph or take more readings <u>and</u> compare k values (not “repeat readings” on its own).</p> <p>B Improved method to measure D e.g. use (vernier) calipers/place blocks either side of cylinder.</p> <p>C Improved method to measure L e.g. rule with pointers/clamp rule/measure diameter of bob and add/subtract/find radius.</p> <p>D Use larger values of D/larger difference in D.</p> <p>E Method to improve timing e.g. video/record/film <u>with</u> timer/frame-by-frame/use fiducial marker at the centre of oscillation.</p> <p>F Method to improve setup e.g. use a plumb-line.</p> <p><i>1 mark for each point up to a maximum of 4.</i></p>	4