

Cambridge International AS & A Level

PHYSICS
Paper 4 A Level Structured Questions
MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Abbreviations

1	Alternative and acceptable answers for the same marking point.
()	Bracketed content indicates words which do not need to be explicitly seen to gain credit but which indicate the context for an answer. The context does not need to be seen but if a context is given that is incorrect then the mark should not be awarded.
	Underlined content must be present in answer to award the mark. This means either the exact word or another word that has the same technical meaning.

Mark categories

B marks	These are <u>independent</u> marks, which do not depend on other marks. For a B mark to be awarded, the point to which it refers must be seen specifically in the candidate's answer.
M marks	These are <u>method</u> marks upon which A marks later depend. For an M mark to be awarded, the point to which it refers must be seen specifically in the candidate's answer. If a candidate is not awarded an M mark, then the later A mark cannot be awarded either.
C marks	These are <u>compensatory</u> marks which can be awarded even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known them. For example, if an equation carries a C mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the C mark is awarded. If a correct answer is given to a numerical question, all of the preceding C marks are awarded automatically. It is only necessary to consider each of the C marks in turn when the numerical answer is not correct.
A marks	These are <u>answer</u> marks. They may depend on an M mark or allow a C mark to be awarded by implication.

© UCLES 2023 Page 5 of 16

Question	Answer	Marks
1(a)(i)	force per unit mass	B1
1(a)(ii)	force per unit positive charge	B1
1(a)(iii)	similarity: inversely proportional to distance (from point) points of equal potential lie on concentric spheres zero at infinite distance Any point, 1 mark	B1
	difference: gravitational potential is (always) negative electric potential can be positive or negative Any point, 1 mark	B1
1(b)(i)	$g = GM/r^2$	M1
	$E = Q / 4\pi \varepsilon_0 r^2$	M1
	algebra showing the elimination of r leading to $M/Q = (1/4\pi G\varepsilon_0)(g/E)$	A1
1(b)(ii)	α = 1 / (4 π × 6.67 × 10 ⁻¹¹ × 8.85 × 10 ⁻¹²) = 1.35 × 10 ²⁰ (kg ² C ⁻²)	A1
	or	
	$\alpha = (8.99 \times 10^9) / (6.67 \times 10^{-11}) = 1.35 \times 10^{20} \text{ (kg}^2 \text{ C}^{-2})$	
1(c)(i)	$E = \alpha gQ/M$	C1
	= $(1.35 \times 10^{20} \times 9.81 \times 4.80 \times 10^{5}) / (5.98 \times 10^{24})$	
	= 106 N C ⁻¹ or 106 V m ⁻¹	A1
1(c)(ii)	same (direction)	B1

© UCLES 2023 Page 6 of 16

Question	Answer	Marks
2(a)	horizontal force on sphere causes centripetal acceleration	B1
	weight of sphere is (now) equal to vertical component of tension or horizontal and vertical components (of force) (now) combine to give greater tension (in spring)	B1
	greater tension in spring so greater extension of spring	B1
2(b)(i)	$r = 10.8 \times \sin 27^{\circ} = 4.9 \text{ cm}$	A1
2(b)(ii)	$T\cos\theta = mg$ or $T\cos\theta = W$ and $W = mg$	C1
	$T \cos 27^{\circ} = 0.29 \times 9.81$ leading to $T = 3.2 \text{ N}$	A1
2(b)(iii)	$\Delta T = 3.2 - (0.29 \times 9.81)$	C1
	$k = \Delta T / \Delta x$ = $[3.2 - (0.29 \times 9.81)] / [10.8 - 8.5]$ = 0.15 N cm^{-1}	A1
2(c)(i)	centripetal acceleration = $(T \sin \theta) / m$	C1
	$= (3.2 \times \sin 27^{\circ}) / 0.29$	
	= 5.0 m s ⁻²	A1

© UCLES 2023 Page 7 of 16

Question	Answer	Marks
2(c)(ii)	$a = r\omega^2$ and $\omega = 2\pi/T$ or $a = v^2/r$ and $v = 2\pi r/T$	C1
	$T = 2\pi \times \sqrt{(0.049/5.0)}$	A 1
	= 0.62 s	

© UCLES 2023 Page 8 of 16

Question	Answer	Marks
3(a)	no net thermal energy is transferred (between them)	B1
3(b)(i)	variation (of density with temperature) is linear or each temperature has a unique value of density	B1
3(b)(ii)	 variation (of density with temperature) is not linear region where the density does not vary with temperature different temperatures have the same density Any two points, 1 mark each 	B2
3(c)(i)	boiling point = 80 °C	A1
3(c)(ii)	Q = Pt and $t = 21 s$	C1
	(thermal energy supplied = $810 \times 21 = 17000 \text{ J}$)	
	$c = Q / m \Delta \theta$	C1
	thermal energy absorbed by beaker = $42 \times 0.84 \times (80 - 25)$	C1
	(= 1940 J)	
	s.h.c. of liquid = $[(810 \times 21) - (42 \times 0.84 \times (80 - 25))] / [120 \times (80 - 25)]$	A1
	$= 2.3 \text{ J g}^{-1} \text{ K}^{-1}$	
3(d)	sketch: straight diagonal line from 25 °C to 100 °C and then horizontal at 100 °C	B1
	straight diagonal line starting at 25 °C with gradient approximately half that of the original line	B1

© UCLES 2023 Page 9 of 16

Question	Answer	Marks
4(a)	 particles are in (continuous) random motion particles have negligible volume (compared with the gas) negligible forces between particles (except during collisions) (all) collisions (perfectly) elastic time of collision negligible (in comparison with time between collisions) Any two points, 1 mark each 	B2
4(b)(i)	(general starting equation) $pV = nRT$	C1
	T = (2pV/nR) where R is the (molar) gas constant	A 1
4(b)(ii)	sketch: straight vertical line XY from $(V, 2p)$ to (V, p)	B1
	straight horizontal line YZ from (V, p) to $(2V, p)$	B1
	curve with gradient increasing from Z to X from (2V, p) to (V, 2p)	B1
4(b)(iii)	XY work done on gas correct (= 0)	B1
	ZX increase in internal energy correct (= 0)	B1
	YZ work done on gas correct (= $-pV$)	B1
	XY increase in internal energy such that the increase in internal energy column adds up to zero	B1
	all three thermal energies transferred such that $\Delta U = q + w$ in each row (completely correct answer:	B1
	change ΔU Q w	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
)	

© UCLES 2023 Page 10 of 16

Question	Answer	Marks
5(a)(i)	correct circuit symbol for a diode shown correctly connected in series with the wires leading into and out of the dotted box	B1
5(a)(ii)	smoothing / V_{OUT} is smoothed	B1
5(b)(i)	frequency = 1/0.04	A1
	= 25 Hz	
5(b)(ii)	$V = V_0 \exp(-t/RC)$ and $\tau = RC$ or $V = V_0 \exp(-t/\tau)$	C1
	$3.25 = 5.50 \exp(-0.020 / \tau)$ leading to $\tau = 0.038 s$	A1
5(b)(iii)	$\tau = RC$	C1
	capacitance = 0.038 / 14000	A1
	$= 2.7 \times 10^{-6} \mathrm{F}$	
5(c)	V_{IN} has constant magnitude in both positive and negative directions	B1
	(so) V_{OUT} is (now) constant / V_{OUT} does not vary with time	B1

© UCLES 2023 Page 11 of 16

Question	Answer	Marks
6(a)	a region where a force acts on	M1
	a current-carrying conductor or a moving charge or a magnetic material / magnetic pole	A1
6(b)	concentric circles around the wire	B1
	spacing between circles increases with distance from wire	B1
	arrows showing direction of field is clockwise	B1
6(c)(i)	F = BIL	C1
	force per unit length $= BI$	A1
	$= 2.6 \times 10^{-3} \times 5.0$	
	= 0.013 N m ⁻¹	
6(c)(ii)	to the right	B1
6(c)(iii)	force (per unit length) has the same magnitude due to Newton's 3rd law	B1
	$0.013 = 1.5 \times 10^{-3} \times I$	A1
	current = 8.7 A	

© UCLES 2023 Page 12 of 16

Question	Answer	Marks
7(a)	wavelength associated with a moving particle	B1
7(b)(i)	(electron) diffraction	B1
7(b)(ii)	beam spreads out indicating diffraction or light and dark regions indicate an interference pattern	B1
	electron beam is behaving as a wave	B1
7(c)(i)	central blob and concentric rings	B1
	rings closer together (than previously)	B1
7(c)(ii)	(greater p.d. so) electrons to have greater momentum	B1
	greater momentum so decrease in (de Broglie) wavelength	B1
	lower (de Broglie) wavelength (for same grating spacing in crystal) causes: smaller diffraction angle or smaller angle of intensity maxima (for each order) or decrease in fringe spacing in diffraction pattern	B1

© UCLES 2023 Page 13 of 16

Question	Answer	Marks
8(a)(i)	specific acoustic impedance = $1200 \times 1400 = 1.68 \times 10^6 \text{ kg m}^{-2} \text{ s}^{-1}$	A1
8(a)(ii)	density of air shown in table as 1.29	A1
	speed of sound in tissue shown in table as 1540	A1
8(b)(i)	intensity reflection coefficient = $(Z_1 - Z_2)^2 / (Z_1 + Z_2)^2$	C1
	$= (1680000 - 440)^2 / (1680000 + 440)^2$	
	= 0.999	A1
8(b)(ii)	intensity reflection coefficient = $(Z_1 - Z_2)^2 / (Z_1 + Z_2)^2$	A1
	$= (1680000 - 1680000)^2 / (1680000 + 1680000)^2$	
	= 0	
8(c)	without gel, (almost) all of the (incident) ultrasound is reflected (from skin)	B1
ı	with gel, (almost) all of the (incident) ultrasound is transmitted (into the body)	B1

© UCLES 2023 Page 14 of 16

Question	Answer	Marks
9(a)	time for activity (of sample) to halve	B1
9(b)	sketch: line with positive gradient starting at $(0,0)$ and extending to $t = 80$ min	B1
	exponential curve, extending from $t = 0$ to $t = 80$ min, with gradient of steadily decreasing magnitude	B1
	line passing through (0,0), (20, 0.5N ₀) and (40, 0.75 N ₀)	B1
9(c)(i)	every (undecayed) nucleus has the same probability of decay	M1
	fewer (undecayed) nuclei remaining (with time), so fewer will decay (in a given time interval)	A1
9(c)(ii)	 sample emits in all directions but detector only captures emissions in one direction some emissions are absorbed before reaching detector some emissions are scattered within the sample simultaneous arrival of multiple particles only registers once some particles may reach detector but not cause ionisation Any two points, 1 mark each 	B2
	measured count rate is less than the activity	B1

© UCLES 2023 Page 15 of 16

Question	Answer	Marks
10(a)	speed is (directly) proportional to distance	M1
	speed is speed of recession of galaxy from an observer, and distance is the distance of the galaxy from the observer	A1
10(b)	$F = L/(4\pi d^2)$	C1
	$= (3.8 \times 10^{31}) / [4\pi \times (1.8 \times 10^{24})^2]$	A1
	$= 9.3 \times 10^{-19} \mathrm{W}\mathrm{m}^{-2}$	
10(c)(i)	galaxy is moving away (from the Earth)	B1
	wavelength (of light from the galaxy) increased by the Doppler effect / due to redshift	B1
10(c)(ii)	$\Delta \lambda / \lambda = v/c$	C1
	$v = [(492 - 486) \times 3.00 \times 10^8] / 486$	
	$(v = 3.7 \times 10^6 \mathrm{m s^{-1}})$	
	$H_0 = v/d$	C1
	$= (3.7 \times 10^6) / (1.8 \times 10^{24})$	A1
	$= 2.1 \times 10^{-18} \mathrm{s}^{-1}$	

© UCLES 2023 Page 16 of 16