

Cambridge International AS & A Level

PHYSICS

9702/51

Paper 5 Planning, Analysis and Evaluation

May/June 2023

MARK SCHEME

Maximum Mark: 30

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

This document consists of **12** printed pages.

6 Calculation specific guidance

Correct answers to calculations should be given full credit even if there is no working or incorrect working, **unless** the question states 'show your working'.

For questions in which the number of significant figures required is not stated, credit should be awarded for correct answers when rounded by the examiner to the number of significant figures given in the mark scheme. This may not apply to measured values.

For answers given in standard form (e.g. $a \times 10^n$) in which the convention of restricting the value of the coefficient (a) to a value between 1 and 10 is not followed, credit may still be awarded if the answer can be converted to the answer given in the mark scheme.

Unless a separate mark is given for a unit, a missing or incorrect unit will normally mean that the final calculation mark is not awarded. Exceptions to this general principle will be noted in the mark scheme.

7 Guidance for chemical equations

Multiples / fractions of coefficients used in chemical equations are acceptable unless stated otherwise in the mark scheme.

State symbols given in an equation should be ignored unless asked for in the question or stated otherwise in the mark scheme.

Question	Answer	Marks
1	Defining the problem	
	θ is the independent variable and t is the dependent variable or vary θ and measure t	1
	keep d <u>constant</u>	1
	Methods of data collection	
	labelled diagram of workable experiment including: <ul style="list-style-type: none"> • plane supported by stand / support • stand/support on bench/floor/horizontal surface • minimum of two labels from cube, cylinder, (inclined) plane, method of support, bench/floor/horizontal surface, pulley, string 	1
	diagram showing method to measure d , e.g. <u>clamped</u> vertical rule near cylinder or drawn rule on plane used to measure d or distance d marked on plane and rule used to determine d	1
	use a protractor to measure θ or use a rule(r) to measure appropriate lengths for a trigonometric calculation	1
	use a timer/stop-watch to measure t or light gates connected to a timer to measure t	1

Question	Answer	Marks
1	Method of Analysis	
	plot a graph of $\frac{1}{t^2}$ against $\sin \theta$ or equivalent (e.g. $\sin \theta$ against $\frac{1}{t^2}$) Do not accept logarithms.	1
	$H = -\frac{2d(A+B) \times \text{gradient}}{A}$ $(\text{for } \sin \theta \text{ against } \frac{1}{t^2} : H = -\frac{2d(A+B)}{A \times \text{gradient}})$	1
	$K = -\frac{2d(A+B) \times y\text{-intercept}}{A}$ $(\text{for } \sin \theta \text{ against } \frac{1}{t^2} : K = -H \times y\text{-intercept})$	1

Question	Answer	Marks
1	Additional detail including safety considerations	6
	D1 Safety precaution linked to <u>falling</u> cylinder, e.g. use of cushion/sand box to collect cylinder/prevent damage to cylinder/floor/bench/injury	
	D2 protractor correctly positioned on diagram or appropriate trigonometric relationship for marked lengths	
	D3 keep <i>A</i> and <i>B</i> <u>constant</u>	
	D4 use a (top-pan) balance to measure <i>A</i> and <i>B</i>	
	D5 correct positioning of light gates to determine <i>t</i> , e.g. two light gates either end of distance <i>d</i> , connected to a timer or correct <u>position</u> of video camera with <u>timer in frame</u> of the video to <u>determine</u> <i>t</i>	
	D6 method to release cylinder/cube, e.g. cube held by set square, set square moved to release cube.	
	D7 reasoned method to keep <i>d</i> constant <u>as θ changes</u> , e.g. (when measuring <i>d</i> by position of cylinder) adjust the length of the string or adjust the position of vertical marks or adjust the position of the vertical rule or initial position of the cube or (when measuring <i>d</i> by position of cube) use fixed marks on the plane or ruler placed on the plane with <i>d</i> measured between the marks	
	D8 method to increase <i>t</i> for cylinder to fall, e.g. use large <i>d</i> to increase <i>t</i>	
	D9 repeat measurements of <i>t</i> for the same θ and average <i>t</i>	
	D10 relationship valid <u>if</u> a straight line is produced (not passing through the origin) Do not accept straight line passing through the origin.	

Question	Answer	Marks														
2(a)	gradient = $-R \ln\left(\frac{V}{V_0}\right)$	1														
2(b)	<table border="1" data-bbox="842 346 1432 811"> <thead> <tr> <th data-bbox="842 346 1140 404">C / 10^{-4} F</th><th data-bbox="1140 346 1432 404">T / s</th></tr> </thead> <tbody> <tr> <td data-bbox="842 404 1140 463">0.89 or 0.892</td><td data-bbox="1140 404 1432 463">13.7 ± 0.8</td></tr> <tr> <td data-bbox="842 463 1140 522">1.3 or 1.32</td><td data-bbox="1140 463 1432 522">20.4 ± 0.7</td></tr> <tr> <td data-bbox="842 522 1140 581">1.6 or 1.58</td><td data-bbox="1140 522 1432 581">24.3 ± 0.6</td></tr> <tr> <td data-bbox="842 581 1140 639">1.0 or 1.03</td><td data-bbox="1140 581 1432 639">16.1 ± 0.8</td></tr> <tr> <td data-bbox="842 639 1140 698">1.2 or 1.18</td><td data-bbox="1140 639 1432 698">18.3 ± 0.7</td></tr> <tr> <td data-bbox="842 698 1140 757">2.1 or 2.08</td><td data-bbox="1140 698 1432 757">31.5 ± 0.6</td></tr> </tbody> </table> <p data-bbox="327 843 1965 901">Values of C and T correct as shown above.</p>	C / 10^{-4} F	T / s	0.89 or 0.892	13.7 ± 0.8	1.3 or 1.32	20.4 ± 0.7	1.6 or 1.58	24.3 ± 0.6	1.0 or 1.03	16.1 ± 0.8	1.2 or 1.18	18.3 ± 0.7	2.1 or 2.08	31.5 ± 0.6	1
C / 10^{-4} F	T / s															
0.89 or 0.892	13.7 ± 0.8															
1.3 or 1.32	20.4 ± 0.7															
1.6 or 1.58	24.3 ± 0.6															
1.0 or 1.03	16.1 ± 0.8															
1.2 or 1.18	18.3 ± 0.7															
2.1 or 2.08	31.5 ± 0.6															
	Absolute uncertainties in T correct as shown above.	1														
2(c)(i)	Six points from (b) plotted correctly. Must be within half a small square. Diameter of points must be less than half a small square.	1														
	Error bars in T plotted correctly. All error bars to be plotted. Total length of bar must be accurate to less than half a small square and symmetrical.	1														

Question	Answer	Marks
2(c)(ii)	<p>Straight line of best fit drawn. Do not accept line from top point to bottom point. Points must be balanced. Line must pass between (1.42, 22.0) and (1.45, 22.0) and between (1.95, 30.0) and (2.00, 30.0)</p>	1
	<p>Worst acceptable line drawn (steepest or shallowest possible line that passes through all the error bars). All error bars must be plotted.</p>	1
2(c)(iii)	<p>Gradient determined with clear substitution of data points into $\Delta y / \Delta x$. Distance between data points must be greater than half the length of the drawn line.</p>	1
	<p>Gradient of worst acceptable line determined with clear substitution of data points into $\Delta y / \Delta x$. $\text{uncertainty} = (\text{gradient of line of best fit} - \text{gradient of worst acceptable line})$ or $\text{uncertainty} = \frac{1}{2} (\text{steepest worst line gradient} - \text{shallowest worst line gradient})$</p>	1
2(d)	– 0.69 or – 0.693 and ± 0.06	1
2(e)(i)	<p>R determined using gradient and R given to 2 or 3 significant figures.</p> $R = -\frac{\text{gradient}}{\ln\left(\frac{V}{V_0}\right)} = \frac{\text{(c)(iii)}}{\text{(d)}}$	1
	<p>R correctly determined using gradient and SI unit with correct power of ten for R (e.g. Ω).</p>	1

Question	Answer	Marks
2(e)(ii)	<p>Percentage uncertainty in R with method shown.</p> <p>percentage uncertainty = $\left(\frac{\Delta \left(\ln \left(\frac{V}{V_0} \right) \right)}{\ln \left(\frac{V}{V_0} \right)} + \frac{\Delta \text{gradient}}{\text{gradient}} \right) \times 100$</p> <p>or</p> <p>Correct substitution for max/min methods.</p>	1

Question	Answer	Marks
2(f)	<p>C determined to a minimum of 2 significant figures from (c)(iii) or (d) and (e)(i) with correct substitution.</p> $C = \frac{T}{\text{gradient}} = \frac{60.0}{\text{gradient}}$ <p>or</p> $C = \frac{-T}{-R \ln\left(\frac{V}{V_0}\right)} = \frac{-60.0}{(\text{e})(\text{i}) \times (\text{d})}$	1
	<p>Absolute uncertainty in C determined with <u>correct method</u> used:</p> <p>Using gradient to determine C:</p> $\Delta C = \left(\frac{\Delta \text{gradient}}{\text{gradient}} \right) \times C$ <p>Allow using R to determine C:</p> $\Delta C = \left(\frac{\Delta \left(\ln\left(\frac{V}{V_0}\right) \right)}{\ln\left(\frac{V}{V_0}\right)} + \frac{(\text{e})(\text{ii})}{100} \right) \times C$	1