

Cambridge International AS & A Level

PHYSICS

9702/52

Paper 5 Planning, Analysis and Evaluation

May/June 2023

MARK SCHEME

Maximum Mark: 30

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

This document consists of **12** printed pages.

6 Calculation specific guidance

Correct answers to calculations should be given full credit even if there is no working or incorrect working, **unless** the question states 'show your working'.

For questions in which the number of significant figures required is not stated, credit should be awarded for correct answers when rounded by the examiner to the number of significant figures given in the mark scheme. This may not apply to measured values.

For answers given in standard form (e.g. $a \times 10^n$) in which the convention of restricting the value of the coefficient (a) to a value between 1 and 10 is not followed, credit may still be awarded if the answer can be converted to the answer given in the mark scheme.

Unless a separate mark is given for a unit, a missing or incorrect unit will normally mean that the final calculation mark is not awarded. Exceptions to this general principle will be noted in the mark scheme.

7 Guidance for chemical equations

Multiples / fractions of coefficients used in chemical equations are acceptable unless stated otherwise in the mark scheme.

State symbols given in an equation should be ignored unless asked for in the question or stated otherwise in the mark scheme.

Question	Answer	Marks
1	Defining the problem	
	<i>R</i> is the independent variable and <i>E</i> is the dependent variable or vary <i>R</i> and measure <i>E</i>	1
	keep <i>V</i> <u>constant</u>	1
	Methods of data collection	
	labelled diagram of workable experiment including: <ul style="list-style-type: none"> coil P placed close to coil Q separate workable circuit for coil Q (a.c.) voltmeter or oscilloscope connected across coil Q (Do not accept a power supply connected to coil Q.)	1
	a.c. power supply/signal generator connected to resistor and coil P in series	1
	workable circuit with power supply <u>and</u> (a.c.) voltmeter/oscilloscope in parallel with resistor <u>and</u> coil P or across terminals of power supply/signal generator	1
	method to determine <i>R</i> , e.g. measure current in <i>R</i> and p.d. across <i>R</i> and use $R = V_R/I$ or measure <i>R</i> using an ohmmeter	1

Question	Answer	Marks
1	Method of Analysis	
	plot a graph of $\frac{1}{E}$ against R or equivalent (e.g. R against $\frac{1}{E}$) Do not accept logarithms.	1
	$M = \frac{1}{2\pi fV \times \text{gradient}}$ (for R against $\frac{1}{E}$: $M = \frac{\text{gradient}}{2\pi fV}$)	1
	$k = 2\pi fVM \times y\text{-intercept}$ or $k = \frac{y\text{-intercept}}{\text{gradient}}$ (for R against $\frac{1}{E}$: $k = -y\text{-intercept}$)	1

Question	Answer	Marks
1	Additional detail including safety considerations	6
D1	precaution linked to <u>hot coil (P)</u> / <u>hot resistor</u> , e.g. use of (heat-proof) gloves, wait until circuit cools down or precaution linked to <u>shocks</u> from <u>high voltages</u> e.g. use of (insulating) gloves or switch off supply before touching the circuit (to change R)	
D2	keep the number of turns on (both) coils <u>constant</u>	
D3	keep f <u>constant</u>	
D4	keep distance between the coils <u>constant</u>	
D5	method to keep distance between the coils constant, e.g. fix/clamp coils to bench	
D6	method to measure f , e.g. read from signal generator or use of oscilloscope	
D7	method to determine f from oscilloscope, e.g. period from oscilloscope $T = \text{time-base} \times \text{horizontal distance}$ and $f = 1/T$	
D8	method to determine V or E from oscilloscope, e.g. $V = y\text{-gain} \times \text{vertical distance}$	
D9	method to increase E e.g. use iron core/more turns on <u>coil Q</u> /high frequency/high p.d. (across R and coil P)	
D10	relationship valid if a straight line is produced (not passing through the origin) Do not accept straight line passing through the origin.	

Question	Answer	Marks														
2(a)	$\text{gradient} = \frac{Yk}{p}$ $y\text{-intercept} = \frac{YkZ}{p}$	1														
2(b)	<table border="1" data-bbox="826 409 1439 886"> <tr> <td data-bbox="826 409 1123 470">$V / 10^{-5} \text{ m}^3$</td><td data-bbox="1123 409 1439 470">absolute uncertainty</td></tr> <tr> <td data-bbox="826 470 1123 530">3.81 or 3.815</td><td data-bbox="1123 470 1439 530">± 0.03</td></tr> <tr> <td data-bbox="826 530 1123 590">3.99 or 3.986</td><td data-bbox="1123 530 1439 590">± 0.03</td></tr> <tr> <td data-bbox="826 590 1123 651">4.16 or 4.163</td><td data-bbox="1123 590 1439 651">± 0.04</td></tr> <tr> <td data-bbox="826 651 1123 711">4.33 or 4.335</td><td data-bbox="1123 651 1439 711">± 0.04</td></tr> <tr> <td data-bbox="826 711 1123 771">4.48 or 4.481</td><td data-bbox="1123 711 1439 771">± 0.04</td></tr> <tr> <td data-bbox="826 771 1123 832">4.65 or 4.652</td><td data-bbox="1123 771 1439 832">± 0.04</td></tr> </table> <p data-bbox="332 917 1965 978">Values of V correct as shown above.</p>	$V / 10^{-5} \text{ m}^3$	absolute uncertainty	3.81 or 3.815	± 0.03	3.99 or 3.986	± 0.03	4.16 or 4.163	± 0.04	4.33 or 4.335	± 0.04	4.48 or 4.481	± 0.04	4.65 or 4.652	± 0.04	1
$V / 10^{-5} \text{ m}^3$	absolute uncertainty															
3.81 or 3.815	± 0.03															
3.99 or 3.986	± 0.03															
4.16 or 4.163	± 0.04															
4.33 or 4.335	± 0.04															
4.48 or 4.481	± 0.04															
4.65 or 4.652	± 0.04															
	Absolute uncertainties in V correct as shown above.	1														
2(c)(i)	<p data-bbox="332 1044 1965 1121">Six points from (b) plotted correctly. Must be within half a small square. Diameter of points must be less than half a small square.</p> <p data-bbox="332 1149 1965 1225">Error bars in V plotted correctly. All error bars to be plotted. Total length of bar must be accurate to less than half a small square and symmetrical.</p>	1														

Question	Answer	Marks
2(c)(ii)	<p>Straight line of best fit drawn. Do not accept line from top point to bottom point. Points must be balanced. Line must pass between (27.5, 3.90) and (29.5, 3.90) and between (82.0, 4.60) and (84.0, 4.60).</p>	1
	<p>Worst acceptable line drawn (steepest or shallowest possible line that passes through all the error bars). All error bars must be plotted.</p>	1
2(c)(iii)	<p>Gradient determined with clear substitution of data points into $\Delta y / \Delta x$. Distance between data points must be greater than half the length of the drawn line.</p>	1
	<p>Gradient of worst acceptable line determined with clear substitution of data points into $\Delta y / \Delta x$. $\text{uncertainty} = (\text{gradient of line of best fit} - \text{gradient of worst acceptable line})$ or $\text{uncertainty} = \frac{1}{2} (\text{steepest worst line gradient} - \text{shallowest worst line gradient})$</p>	1
2(c)(iv)	<p>y-intercept determined by substitution of correct point with consistent power of ten in m and y into $y = mx + c$.</p>	1
	<p>y-intercept of worst acceptable line determined by substitution into $y = mx + c$. $\text{uncertainty} = \text{y-intercept of line of best fit} - \text{y-intercept of worst acceptable line}$ or $\text{uncertainty} = \frac{1}{2} (\text{steepest worst line y-intercept} - \text{shallowest worst line y-intercept})$ Do not accept ECF from false origin method.</p>	1

Question	Answer	Marks
2(d)(i)	<p>Y determined using gradient and Y and Z given to 2 or 3 significant figures.</p> $Y = \frac{p \times \text{gradient}}{k} = 7.3188 \times 10^{27} \times \text{gradient}$	1
	<p>Z determined using y-intercept and Y <u>and</u> Z given with SI units.</p> $Z = \frac{p \times y\text{-intercept}}{Yk} \quad \text{or} \quad Z = \frac{y\text{-intercept}}{\text{gradient}}$ <p>Units: Y: no unit Z: °C</p>	1
2(d)(ii)	<p>Percentage uncertainty in Y with method shown.</p> $\text{percentage uncertainty} = \left(\frac{\Delta p}{p} + \frac{\Delta \text{gradient}}{\text{gradient}} \right) \times 100$ <p>or</p> <p>Correct substitution for max/min methods.</p>	1

Question	Answer	Marks
2(e)	<p>θ determined to a minimum of 2 significant figures from (c)(iii) and (c)(iv) or (d)(i) with <u>correct substitution</u> and <u>correct powers of ten</u>.</p> $V = \frac{\pi \times (0.0279)^2 \times 0.0600}{4} = 3.67 \times 10^{-5}$ <p>and</p> $\theta = \frac{pV}{Yk} - Z \text{ or } \theta = \frac{V}{\text{gradient}} - Z \text{ or } \theta = \frac{V - y\text{-intercept}}{\text{gradient}}$ <p>or using h directly:</p> $\theta = \frac{p\pi d^2 h}{4Yk} - Z \text{ or } \theta = \frac{\pi d^2 h}{4 \times \text{gradient}} - Z \text{ or } \theta = \frac{\frac{\pi d^2 h}{4} - y\text{-intercept}}{\text{gradient}}$	1