

PHYSICS

9702/21

Paper 2 AS Level Structured Questions

October/November 2019

MARK SCHEME

Maximum Mark: 60

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

This document consists of 11 printed pages.

Question	Answer	Marks
2(a)	the (two) plates are <u>vertical</u> (and separated)	B1
	left plate positively charged and right plate negatively charged/earthed or right plate negatively charged and left plate positively charged/earthed	B1
2(b)	$F = Eq$	C1
	$= 1.3 \times 10^4 \times 3.7 \times 10^{-9}$	A1
	$= 4.8 \times 10^{-5} \text{ N}$	
2(c)	$F^2 = (4.8 \times 10^{-5})^2 + (5.4 \times 10^{-5})^2$ so $F = 7.2 \times 10^{-5} \text{ N}$ or $F = [(4.8 \times 10^{-5})^2 + (5.4 \times 10^{-5})^2]^{0.5}$ so $F = 7.2 \times 10^{-5} \text{ N}$	A1
	electric force is constant (because field strength/ E is constant)	B1
2(d)	weight is constant (and so resultant force constant)	B1
2(e)(i)	$m = 5.4 \times 10^{-5} / 9.81 (= 5.5 \times 10^{-6})$	C1
	$a = 7.2 \times 10^{-5} / (5.5 \times 10^{-6})$	A1
	$= 13 \text{ m s}^{-2}$	
2(e)(ii)	$v^2 = u^2 + 2as$	C1
	$v^2 = 2 \times 13 \times 0.58$	
	$v = 3.9 \text{ m s}^{-1}$	A1

Question	Answer	Marks
3(a)	$\rho = m / V$	C1
	$V = \pi \times (0.16 / 2)^2 \times 7.6 \times 3.0 \ (= 0.458 \text{ m}^3)$	C1
	$m = \pi \times (0.16 / 2)^2 \times 7.6 \times 3.0 \times 1.2 = 0.55 \text{ kg}$	A1
3(b)(i)	$\Delta p = 0.55 \times 7.6$ $= 4.2 \text{ N s}$	A1
3(b)(ii)	$F = 4.2 / 3.0 \text{ or } 0.55 \times 7.6 / 3.0$ $= 1.4 \text{ N}$	A1
3(c)(i)	$F = 1.4 \text{ N}$	A1
3(c)(ii)	Newton's third law (of motion)	B1
3(d)	$2 \times 1.4 = m \times 9.81$ $m = 0.29 \text{ kg}$	A1
3(e)	the density of air is less at high altitude	B1
3(f)	$f_o = f_s v / (v - v_s)$ $= 3000 \times 340 / (340 - 22)$	C1
	$= 3200 \text{ Hz}$	A1

Question	Answer	Marks
4(a)	$k = F / x$ or $k = \text{gradient}$	C1
	e.g. $k = 4.0 / 0.050$	A1
	$k = 80 \text{ N m}^{-1}$	
4(b)	$E = \frac{1}{2}Fx$ or $E = \frac{1}{2}kx^2$ or $E = \text{area under graph}$	C1
	$(\Delta)E = (\frac{1}{2} \times 3.2 \times 0.040) - (\frac{1}{2} \times 1.2 \times 0.015) = 0.055 \text{ J}$ or $(\Delta)E = (\frac{1}{2} \times 80 \times 0.040^2) - (\frac{1}{2} \times 80 \times 0.015^2) = 0.055 \text{ J}$ or $(\Delta)E = \frac{1}{2} \times (1.2 + 3.2) \times 0.025 = 0.055 \text{ J}$	A1
4(c)	$(\Delta)E = mg(\Delta)h$	C1
	$= 0.122 \times 9.81 \times (0.120 - 0.095)$	A1
	$= 0.030 \text{ J}$	
	or	
	$(\Delta)E = W \times (\Delta)h$	(C1)
	$= 1.2 \times 0.025$	(A1)
	$= 0.030 \text{ J}$	

Question	Answer	Marks
4(d)(i)	$E = 0.055 - 0.030$ $= 0.025 \text{ J}$	A1
4(d)(ii)	$E = \frac{1}{2}mv^2$	C1
	$v = [(2 \times 0.025) / 0.122]^{0.5}$ $= 0.64 \text{ m s}^{-1}$	A1

Question	Answer	Marks
5(a)(i)	the dippers are connected to the same vibrator/motor	B1
5(a)(ii)	(the overlapping waves have) similar/same amplitude	B1
5(b)	any means of ‘freezing’ the pattern e.g. use a stroboscope/strobe	B1
5(c)	$vT = \lambda$ or $v = f\lambda$ and $f = 1 / T$	C1
	$T = 0.060 / 0.40$ $= 0.15 \text{ s}$	A1
5(d)(i)	path difference = 3.0 cm	A1
5(d)(ii)	phase difference = 180°	A1
5(e)	line drawn joining points where only maxima are observed (i.e. through points where wavefronts intersect) of length at least 4 cm	B1

Question	Answer	Marks
6(a)	work done / charge or energy (transferred from electrical to other forms) / charge	B1
6(b)	for $V < 0.25$ V resistance is infinite/very high (as current is zero)	B1
	for $V > 0.25$ V resistance decreases (as V increases)	B1
6(c)(i)	$R = V / I$	C1
	$= 0.75 / (15 \times 10^{-3})$	C1
	$= 50 \Omega$	A1

Question	Answer	Marks
6(c)(ii)	1. $V_Y = 15 \times 10^{-3} \times 60$ ($= 0.90$ V)	C1
	$V_X = 2.0 - 0.90 - 0.75$ ($= 0.35$ V)	C1
	$R_X = 0.35 / (15 \times 10^{-3})$ $= 23 \Omega$	A1
	or	
	total $R = 60 + 50 + R_X$	(C1)
	$60 + 50 + R_X = 2.0 / (15 \times 10^{-3})$	(C1)
	$R_X = 23 \Omega$	(A1)
	2. $P = VI$ or $P = EI$ or $P = I^2R$ or $P = V^2/R$	C1
	ratio $= \frac{(15 \times 10^{-3})^2 \times 60}{2.0 \times 15 \times 10^{-3}}$ or $\frac{0.90 \times 15 \times 10^{-3}}{2.0 \times 15 \times 10^{-3}}$ or $\frac{(0.90^2 / 60)}{2.0 \times 15 \times 10^{-3}}$ $= 0.45$	A1

Question	Answer	Marks
7(a)(i)	proton number = 17 and nucleon number = 35	A1
7(a)(ii)	(electron) neutrino	B1
7(b)	d/down (quark charge) is $-\frac{1}{3}(e)$ or <u>two</u> d/down (quark charges) is $-\frac{2}{3}(e)$ or s/strange (quark charge) is $-\frac{1}{3}(e)$	C1
	charge = $-\frac{1}{3}(e) - \frac{1}{3}(e) - \frac{1}{3}(e)$ $= -1(e)$	A1