

PHYSICS

9702/22

Paper 2 AS Level Structured Questions

October/November 2019

MARK SCHEME

Maximum Mark: 60

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

This document consists of **10** printed pages.

Question	Answer	Marks
2(b)(iii)	<p>total distance fallen = $0.280 + 0.080 = 0.360$</p> $0.360 = \frac{1}{2} \times 9.81 \times t^2$ $t = 0.27 \text{ s}$	C1
	<p>time taken = $0.27 - 0.24$</p> $= 0.03 \text{ s}$	A1
	or	
	$v = 9.81 \times 0.239$ or $(2 \times 9.81 \times 0.280)^{0.5}$ or $(2 \times 0.280) / 0.239$ $= 2.34 \text{ (m s}^{-1}\text{)}$	(C1)
	$0.080 = 2.34t + \frac{1}{2} \times 9.81 \times t^2$ solving quadratic equation gives $t = 0.03 \text{ s}$ <i>allow any correct method using equations of uniform accelerated motion</i>	(A1)
2(c)	(average) resultant force/acceleration/speed/velocity (of low-density ball) is less	B1
	(so) time interval is longer	B1

Question	Answer	Marks
3(a)	force on body A (by body B) is equal (in magnitude) to force on body B (by body A)	B1
	force on body A (by body B) is opposite (in direction) to force on body B (by body A)	B1
3(b)(i)	$m_X \times 5v$ or $(m_X + m_Y) \times v$	C1
	$m_X \times 5v = (m_X + m_Y) \times v$ (so) $m_Y / m_X = 4$	A1
3(b)(ii)	$(E =) \frac{1}{2}mv^2$	C1
	ratio $= [\frac{1}{2} \times (m_X + m_Y) \times v^2] / [\frac{1}{2} \times m_X \times (5v)^2]$	C1
	$= 0.2$	A1
3(b)(iii)	ratio $= 1$	A1
3(c)(i)	1. (magnitude of resultant force is) zero	B1
	2. (magnitude of resultant force is) constant	B1
	(direction of resultant force is) opposite to the momentum	B1
3(c)(ii)	horizontal line from (0 ms, 0 squares) ending at (20 ms, 0 squares)	B1
	straight line from (20 ms, 0 squares) ending at (40 ms, 4.0 squares [= 4.0 cm vertically])	B1
	horizontal line from (40 ms, 4.0 squares) ending at (60 ms, 4.0 squares)	B1

Question	Answer	Marks
4(a)(i)	(vertically) upwards/up	B1
4(a)(ii)	increases (with time/velocity/depth)	B1
4(b)(i)	for a body in (rotational) equilibrium <u>sum/total</u> of clockwise moments about a point = <u>sum/total</u> of anticlockwise moments about the (same) point	B1 B1
4(b)(ii)	$(F_B \times 5.0)$ or (380×2.5) or (750×1.6) $(F_B \times 5.0) = (380 \times 2.5) + (750 \times 1.6)$ $F_B = 430 \text{ N}$	C1 A1
4(b)(iii)	taking moments about C: $(380 \times 2.5) = 750 \times (2.0 - x)$ $(2.0 - x) = 1.3$ $x = 0.7 \text{ m}$ or moments may be taken about other points, e.g. about D: $(380 \times 4.5) + (750 \times x) = 1130 \times 2.0$ $x = 0.7 \text{ m}$	C1 A1 (C1) (A1)

Question	Answer	Marks
5(a)	distance moved by wavefront/energy during one cycle/oscillation/period (of source) or <u>minimum</u> distance between two wavefronts or distance between two <u>adjacent</u> wavefronts	B1
5(b)	$(T =) 2.0 \times 2.5 (= 5.0 \text{ ms})$ or $2.0 \times 2.5 \times 10^{-3} (= 5.0 \times 10^{-3} \text{ s})$	C1
	$f = 1 / (5.0 \times 10^{-3})$ $= 200 \text{ Hz}$	A1
5(c)(i)	(path difference $=) 8.0 + (20.8^2 - 8.0^2)^{0.5} - 20.8 = 6.4 \text{ (m)}$	A1
5(c)(ii)	<ul style="list-style-type: none"> • <u>path difference</u> $= 4\lambda$ • waves (meet at C) in phase • constructive interference (of waves) <p><i>any two points, one mark each</i></p>	B2
5(c)(iii)	$v = 200 \times 1.6$ $= 320 \text{ (ms}^{-1}\text{)}$	C1
	$\Delta t = 6.4 / 320$ or $27.2 / 320 - 20.8 / 320$ $= 0.020 \text{ s}$	A1
5(c)(iv)	$3\lambda = 6.4$ $\lambda = 2.1 \text{ m}$	A1

Question	Answer	Marks
6(a)	<u>sum of current(s) into junction = sum of current(s) out of junction</u> or (algebraic) sum of current(s) at a junction is zero	B1
6(b)(i)	$R = V / I$	C1
	$= 0.60 / 7.5 \times 10^{-3}$	C1
	$= 80 \Omega$	A1
6(b)(ii)	resistance decreases	B1
6(c)(i)	$E = 0.60 + 0.30$ $= 0.90 \text{ V}$	A1
6(c)(ii)	$(I =) 9.3 - 7.5$	C1
	$I = 1.8 \text{ (mA)} \text{ or } 1.8 \times 10^{-3} \text{ (A)}$	A1
	$R = 0.90 / 1.8 \times 10^{-3}$ $= 500 \Omega$	
	or	
	total resistance $= 0.90 / 9.3 \times 10^{-3} = 96.8 \text{ } (\Omega)$	(C1)
	total resistance of diode and X $= 0.90 / 7.5 \times 10^{-3} = 120 \text{ } (\Omega)$	
	$1 / 96.8 = 1 / R + 1 / 120$	
	$R = 500 \Omega$	(A1)

Question	Answer	Marks
6(c)(iii)	$P = VI \text{ or } I^2R \text{ or } V^2/R$	C1
	$= 0.60 \times 7.5 \times 10^{-3} \text{ or } (7.5 \times 10^{-3})^2 \times 80 \text{ or } 0.60^2 / 80$	A1
	$= 4.5 \times 10^{-3} \text{ W}$	
6(c)(iv)	current = 2.5 mA	A1

Question	Answer	Marks
7(a)	number of protons = 92	A1
	number of neutrons = 142	A1
7(b)	5.6 MeV = $5.6 \times 1.60 \times 10^{-19} \times 10^6$ (= 8.96×10^{-13} J)	C1
	number = $0.15 / (5.6 \times 1.60 \times 10^{-13})$	A1
	$= 1.7 \times 10^{11}$	
	or	
	0.15 W = $0.15 / (1.60 \times 10^{-19} \times 10^6)$ (= 9.38×10^{11} MeV s ⁻¹)	(C1)
	number = $9.38 \times 10^{11} / 5.6$	
	$= 1.7 \times 10^{11}$	(A1)