

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

PHYSICS 9702/41

Paper 4 A Level Structured Questions

October/November 2019

MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

Question	Answer	Marks
2(a)	(total volume of molecules is) negligible	M1
	compared with volume occupied by the gas	A1
2(b)(i)	pV = NkT	C1
	$4.60 \times 10^{5} \times 2.40 \times 10^{-2} = N \times 1.38 \times 10^{-23} \times (273 + 23)$	C1
	or	
	pV = nRT	(C1)
	$4.60 \times 10^{5} \times 2.40 \times 10^{-2} = n \times 8.31 \times (273 + 23)$	(C1)
	n = 4.49 (mol)	
	$N = nN_A$	
	$= 4.49 \times 6.02 \times 10^{23}$	
	$N = 2.7 \times 10^{24}$	A1

© UCLES 2019 Page 5 of 15

Question	Answer	Marks
2(b)(ii)	volume of one atom = d^3 (= 2.7 × 10 ⁻²⁹ m ³)	C1
	volume of all atoms = $2.7 \times 10^{-29} \times 2.7 \times 10^{24}$	C1
	$= 7 \times 10^{-5} \text{ m}^3$	A1
	or	
	volume of one atom = $(4/3)\pi r^3$ (= 1.41 × 10 ⁻²⁹ m ³)	(C1)
	volume of all atoms = $2.7 \times 10^{24} \times 1.41 \times 10^{-29}$	(C1)
	$= 4 \times 10^{-5} \mathrm{m}^3$	(A1)
2(c)	numerical comparison between answer to (b)(ii) and 2.4×10^{-2} (m ³) showing (b)(ii) is <u>much</u> less than 2.4×10^{-2} (m ³)	B1

© UCLES 2019 Page 6 of 15

Question	Answer	Marks
3(a)	(thermal) energy per (unit) mass (to change state)	B1
	(heat transfer during) change of state at constant temperature	B1
3(b)(i)	32 g	A1
3(b)(ii)	temperature difference (between liquid and surroundings) does not change	B1
3(b)(iii)	VIt = mL	C1
	$230 \times 1.2 \times 60 \times 10 = (56 \times L) + H$	C1
	or $190 \times 1.0 \times 60 \times 10 = (32 \times L) + H$	
	$86 \times 600 = (56 - 32) \times L$	C1
	or	
	$230 \times 1.2 = (56 \times L) / (60 \times 10) + P$	(C1)
	or $190 \times 1.0 = (32 \times L) / (60 \times 10) + P$	
	276 – 190 = (24 × L) / 600	(C1)
	$L = 2200 \text{ J g}^{-1}$	A1

© UCLES 2019 Page 7 of 15

Question	Answer	Marks
3(b)(iv)	$230 \times 1.2 \times 600 = (56 \times 2150) + H$ or $190 \times 1.0 \times 600 = (32 \times 2150) + H$	C1
	H = 45 200 rate = 45 200 / 600	A1
	= 75 W or	
	$230 \times 1.2 = (56 \times 2150) / (60 \times 10) + P$ or $190 \times 1.0 = (32 \times 2150) / (60 \times 10) + P$	(C1)
	rate (= P) = 75 W	(A1)

Question	Answer	Marks
4(a)(i)	distance from a (reference) point in a given direction	B1
4(a)(ii)	line is not straight or gradient is not constant	B1
4(b)(i)	0.85–0.90 cm	A1
4(b)(ii)	$a = -(2\pi f)^2 x$	C1
	e.g. $1.2 = 4\pi^2 \times f^2 \times (0.90 \times 10^{-2})$	C1
	f = 1.8 Hz	A1
4(c)	complete circle/ellipse enclosing the origin	B1
	closed shape passing through $(0, \pm v_0)$ and $(\pm x_0, 0)$	B1

© UCLES 2019 Page 8 of 15

Question	Answer	Marks
5(a)(i)	provides return for the signal	B1
	shields signal from noise	B1
5(a)(ii)	e.g. connection between aerial and TV set	B1
5(b)(i)	gain / dB = 10 lg (P_1/P_2)	C1
	$32 = 10 \lg \{P_{MIN} / (7.6 \times 10^{-6})\}$	A1
	$P_{MIN} = 0.012 \mathrm{W}$	
5(b)(ii)	attenuation per unit length = $(1/L) \times 10 \lg (P_1/P_2)$	C1
	$6.3 = (1/L) \times 10 \lg (2.6/0.012)$	
	L = 3.7 km	A1

© UCLES 2019 Page 9 of 15

Question	Answer	Marks
6(a)	$(E =) Q / 4\pi \varepsilon_0 r^2$	M1
	where ε_0 is permittivity (of free space)	A1
6(b)(i)	field does not change direction/field does not become zero	M1
	so (charges have) opposite (sign)	A1
6(b)(ii)	minimum is at the midpoint (between the charges)	M1
	so (magnitudes are the) same	A1
6(c)	force = field strength × charge and force = mass × acceleration or acceleration is proportional to field strength	B1
	(from $x = 3.0$ cm) to $x = 5.0$ cm: acceleration decreases	B1
	at $x = 5.0$ cm: acceleration is a minimum	B1
	from $x = 5.0$ cm (to $x = 7.0$ cm): acceleration increases	B1

© UCLES 2019 Page 10 of 15

Question	Answer	Marks
7(a)(i)	all frequencies are amplified equally	B1
7(a)(ii)	no drop in output voltage (when there is a current)	B1
7(b)(i)	gain = $1 + R_F / R_{IN}$	C1
	= 1 + (4000 / 800)	
	= 6.0	A1
7(b)(ii)	$2.0 / V_{IN} = 6.0$	A1
	$V_{IN} = (+)0.33 \text{ V}$	
7(b)(iii)	5.0 V	A1
7(b)(iv)	V = 5.0 - 2.2 = 2.8 V	C1
	R = V/I	A1
	= 2.8 / 0.020	
	= 140 Ω	

© UCLES 2019 Page 11 of 15

Question	Answer	Marks
8(a)	concentric circles (around the wire)	M1
	at least 3 circles shown, all with increasing separation	A1
	direction anticlockwise	B1
8(b)(i)	$B = (4\pi \times 10^{-7} \times 6.2) / (2\pi \times 3.1 \times 10^{-2})$	C1
	= 4.0 × 10 ⁻⁵ T	A1
8(b)(ii)	F = BIL or $F/L = BI$	C1
	$F/L = 4.0 \times 10^{-5} \times 8.5$	A1
	$= 3.4 \times 10^{-4} \mathrm{N}\mathrm{m}^{-1}$	
8(c)	correct application of Newton's 3rd law to the forces	M1
	or F/L is proportional to the product of the two currents	
	so same magnitude	A1

Question	Answer	Marks
9(a)	nuclei precess	B1
	precession is about (direction of magnetic) field or frequency of precession is in radio-frequency range	В1
9(b)	 frequency (of precession) depends on field strength to locate/find position of (spinning) nuclei to change region where nuclei are detected any two points, one mark each	B2

Question	Answer	Marks
10(a)(i)	lower right and upper left diodes circled	B1
10(a)(ii)	maximum = 7.0√2	A1
	= 9.9 V	
10(b)(i)	correct symbol for capacitor, shown connected in parallel with R	B1
10(b)(ii)	1. (ripple) decreases	B1
	2. (ripple) increases	B1

© UCLES 2019 Page 13 of 15

Question	Answer	Marks
11(a)	energy (of photon) required to remove electron	M1
	from a surface or reference to minimum energy or reference to zero kinetic energy	A1
11(b)(i)	1. photon energy = hc/λ	C1
	$= (6.63 \times 10^{-34} \times 3.00 \times 10^{8}) / (280 \times 10^{-9})$ $= 7.1 \times 10^{-19} \text{ J}$	A1
	2. electron energy = $(7.1 - 5.5) \times 10^{-19}$ J	C1
	$\frac{1}{2} \times 9.11 \times 10^{-31} \times v^2 = (7.1 - 5.5) \times 10^{-19}$	C1
	$v = 5.9 \times 10^5 \mathrm{m s^{-1}}$	A1
11(b)(ii)	energy is required to bring electron to the surface	B1
11(c)	no change decreases increases decreases	В4

© UCLES 2019 Page 14 of 15

Question	Answer	Marks
12(a)	$E = (3.0 \times 10^8)^2 \times 1.66 \times 10^{-27} (= 1.49 \times 10^{-10} \text{ J})$	M1
	= $(1.49 \times 10^{-10}) / (1.60 \times 10^{-19}) = 9.34 \times 10^8 = 934 \text{ MeV}$	A1
	or	
	binding energy = 8.443 × 95 [or equivalent using La-139 nucleus]	(M1)
	binding energy / mass defect = $(8.443 \times 95) / 0.859 = 934 \text{ MeV}$	(A1)
12(b)(i)	binding energy = 1.865 × 934 (= 1741.91 MeV)	C1
	binding energy per nucleon = 1741.91 / 235	A1
	= 7.41 (MeV)	
12(b)(ii)	less (than)	B1
12(c)	energy = {(1.219 + 0.859) – 1.865)} × 934	C1
	or energy = $(95 \times 8.443) + (139 \times 8.189) - (235 \times 7.412)$	
	= 199 MeV	A1
12(d)	number of reactions = $1.2 \times 10^{-7} \times 6.02 \times 10^{23}$	C1
	$= 7.22 \times 10^{16}$	
	energy release (for one reaction) = $199 \times 1.60 \times 10^{-13}$ (= 3.18×10^{-11} J)	C1
	power = $(7.22 \times 10^{16} \times 3.18 \times 10^{-11}) / (25 \times 10^{-3})$	A1
	$= 9.2 \times 10^7 \mathrm{W}$	

© UCLES 2019 Page 15 of 15