

PHYSICS

9702/42

Paper 4 A Level Structured Questions

October/November 2019

MARK SCHEME

Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

This document consists of **14** printed pages.

Question	Answer	Marks
2(a)(i)	specks of light moving haphazardly	B1
2(a)(ii)	(gas) molecules collide with (smoke) particles or random motion of the (gas) molecules	M1
	<u>causes</u> the (haphazard) motion of the smoke particles or <u>causes</u> the smoke particles to change direction	A1
2(b)(i)	$pV = nRT$	C1
	$n = (3.51 \times 10^5 \times 2.40 \times 10^{-3}) / (8.31 \times 290)$ or $n = (3.75 \times 10^5 \times 2.40 \times 10^{-3}) / (8.31 \times 310)$	C1
	or	
	$pV = NkT$	(C1)
	$n = (3.51 \times 10^5 \times 2.40 \times 10^{-3}) / (1.38 \times 10^{-23} \times 6.02 \times 10^{23} \times 290)$ or $n = (3.75 \times 10^5 \times 2.40 \times 10^{-3}) / (1.38 \times 10^{-23} \times 6.02 \times 10^{23} \times 310)$	(C1)
	$n = 0.350 \text{ mol}$ or 0.349 mol	A1
2(b)(ii)	energy transfer = $(0.349 \text{ or } 0.35) \times 12.5 \times (310 - 290)$ $= 87.3 \text{ J}$ or 87.5 J	C1
2(c)(i)	zero	A1
2(c)(ii)	87.3 J or 87.5 J	A1
	increase	B1

Question	Answer	Marks
3(a)	(thermal) energy per unit mass (to change state)	B1
	change of state without any change of temperature	B1
3(b)(i)	140 g	A1
3(b)(ii)	temperature difference (between apparatus and surroundings) does not change	B1
3(b)(iii)	$VIt = mL$	C1
	$(\{15.1 \times 3.6\} + R) \times 600 = 140 \times L$ or $(\{7.3 \times 1.8\} + R) \times 600 = 65 \times L$	C1
	$41.22 \times 600 = 75 \times L$	C1
	$L = 330 \text{ J g}^{-1}$	A1
3(b)(iv)	$15.1 \times 3.6 \times 600 = (140 \times 330) - H$ or $7.3 \times 1.8 \times 600 = (65 \times 330) - H$	C1
	$H = 13600$ rate of gain = $13600 / 600$ = 23 W	A1

Question	Answer	Marks
4(a)(i)	loss of energy	B1
4(a)(ii)	amplitude (of oscillations) decreases (with time)	B1
4(b)(i)	$\omega = 2\pi / T$	C1
	$T = 0.80 \text{ s}$, so $\omega = 2\pi / 0.80$	A1
	$\omega = 7.9 \text{ rad s}^{-1}$	
4(b)(ii)	$\omega^2 = 2k / M$	C1
	$7.9^2 = 2k / 1.2$	A1
	$k = 37 \text{ N m}^{-1}$	
4(c)(i)	(one) smooth curve, not touching the f -axis, with two concave sides meeting at a peak in between them	B1
	(one) peak at 1.0ω	B1
4(c)(ii)	<ul style="list-style-type: none"> lower peak/(whole) line is lower flatter <u>peak/peak</u> is less sharp peak at (slightly) lower angular frequency/peak moves to left <p><i>any two points, one mark each</i></p>	B2

Question	Answer	Marks
5(a)(i)	product of density and speed	M1
	speed of sound in the medium	A1
5(a)(ii)	$Z_B = 1.8 \times 10^3 \times 4.1 \times 10^3$ $= 7.4 \times 10^6 \text{ kg m}^2 \text{ s}^{-1}$	A1
5(b)	$\alpha = (1.7 - 1.3)^2 / (1.7 + 1.3)^2 = 0.018$ fraction = 0.98	A1
5(c)(i)	reduction in power/intensity (of wave)	M1
	as the wave passes through the medium	A1
5(c)(ii)	1. ratio = $e^{-\mu x}$	C1
	= 0.90	A1
	2. ratio = 0.62	A1
5(d)	fraction = $0.898 \times 0.617 \times 0.98$ = 0.54	A1

Question	Answer	Marks
6(a)	period = $5.0 \mu\text{s}$, so frequency = $2.0 \times 10^5 \text{ Hz}$	A1
6(b)	sketch: three equally spaced vertical lines sitting on <i>f</i> -axis	B1
	two outer vertical lines of equal length and central line longer	B1
	three vertical lines (and no others) shown at frequencies 190 kHz, 200 kHz and 210 kHz	B1

Question	Answer	Marks
7	X-rays are used	B1
	section (of object) is scanned	B1
	scans/images taken at many angles/directions or images of each section are 2-dimensional	B1
	images of (many) sections are combined	B1
	(to give) 3-dimensional image of (whole) structure	B1

Question	Answer	Marks
8(a)	<p>magnitude: (force =) Bqv</p> <p>direction: P→Q or E→F or S→R or H→G</p>	B1
8(b)(i)	EHSP and FGRQ	B1
8(b)(ii)	PE or QF or RG or SH	B1
8(c)(i)	<p><i>any one correct starting point from:</i></p> <ul style="list-style-type: none"> • (mass of 1 atom =) $27 \times 1.66 \times 10^{-27}$ • (amount of substance per unit volume =) $2.7 / 27$ • 27 g (of substance) contains 6.02×10^{23} atoms • (2.7 g mass contains) 0.1 mol • (1 cm³ volume contains) 0.1 mol • (1 m³ volume contains) 10^5 mol <p>$n = (2.7 \times 10^3) / (27 \times 1.66 \times 10^{-27}) = 6.0 \times 10^{28}$ or $n = (2.7 / 27) \times 10^6 \times 6.02 \times 10^{23} = 6.0 \times 10^{28}$</p>	C1
8(c)(ii)	$V_H = (0.15 \times 4.6) / (6.0 \times 10^{28} \times 0.090 \times 10^{-3} \times 1.60 \times 10^{-19})$ $= 8.0 \times 10^{-7} \text{ V}$	C1
		A1

Question	Answer	Marks
9(a)	work done per unit charge	B1
	(work done) moving positive charge from infinity	B1
9(b)(i)	energy $= 4.8 \times 1.60 \times 10^{-13}$ $= 7.7 \times 10^{-13} \text{ J}$	A1
9(b)(ii)	$E_p = Qq / 4\pi\epsilon_0 d$	C1
	$Q = 79e$ and $q = 2e$	C1
	$7.68 \times 10^{-13} = (79 \times 2 \times \{1.60 \times 10^{-19}\}^2) / (4\pi \times 8.85 \times 10^{-12} \times d)$	C1
	$d = 4.7 \times 10^{-14} \text{ m}$	A1
9(c)	(diameter must be) less than/equal to 10^{-13} or 10^{-14} m	B1

Question	Answer	Marks
10(a)	(as temperature rises) electrons in valence band gain energy	B1
	electrons jump to conduction band	B1
	holes are left in the valence band	B1
	increased <u>number</u> (density) of charge carriers causes lower resistance	B1
10(b)(i)	$V^- = V^+$	C1
	$1.50 / 1.20 = R_T / 1.76$	C1
	$R_T = 2.2 \text{ (k}\Omega\text{)}$	C1
	temperature = 14 °C	A1
10(b)(ii)	(For LED to conduct,) V_{OUT} must be negative	B1
	$V^- > V^+$	B1
	R_T must be lower so temperature must be above (b)(i) value	B1

Question	Answer	Marks
11(a)	(induced) e.m.f. proportional to rate of change of (magnetic) flux (linkage)	M1 A1
11(b)(i)	any two from t_1, t_3, t_5, t_7	A1
11(b)(ii)	t_2 and t_4 or t_4 and t_6	A1
11(c)	$\text{e.m.f.} = N\Delta\Phi/\Delta t$ $= (2 \times 9.4 \times 10^{-4} \times 5.0 \times \pi \times (1.8 \times 10^{-2})^2 \times 63) / (6.0 \times 10^{-3})$ $= 0.10 \text{ V}$	C1 C1 A1

Question	Answer	Marks
12(a)(i)	(decay is) unpredictable/cannot be predicted	B1
12(a)(ii)	probability of decay (of a nucleus)	M1
	per unit time	A1
12(b)	$A = \lambda N$	C1
	(for 1.00 m^3) $A = 0.600 / 4.80 \times 10^{-3}$ ($= 125 \text{ Bq}$)	C1
	$N = 125 / ([7.55 \times 10^{-3}] / 3600)$ ($= 5.96 \times 10^7$)	C1
	so ratio = $(2.52 \times 10^{25}) / (5.96 \times 10^7)$	C1
	or	
	(for $4.80 \times 10^{-3} \text{ m}^3$) N for air = $2.52 \times 10^{25} \times 4.80 \times 10^{-3}$ ($= 1.21 \times 10^{23}$)	(C1)
	N for radon = $0.600 / ([7.55 \times 10^{-3}] / 3600)$ ($= 2.86 \times 10^5$)	(C1)
	so ratio = $(1.21 \times 10^{23}) / (2.86 \times 10^5)$	(C1)
	ratio = 4.2×10^{17}	A1