

Cambridge International AS & A Level

PHYSICS

9702/52

Paper 5 Planning, Analysis and Evaluation

October/November 2020

MARK SCHEME

Maximum Mark: 30

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE™, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

This document consists of **10** printed pages.

Annotations

✓	Correct point Method of analysis marks in Question 1
✓ ₁₋₁₀	Additional detail marks in Question 1
✗	Incorrect point
✗	Omission
BOD	Benefit of the doubt
NBOD	No benefit of the doubt given
ECF	Error carried forward
P	Defining the problem marks in Question 1 Power of ten error in Question 2
M0	Methods of data collection marks in Question 1

Question	Answer	Marks
1	Defining the problem	
	<i>m</i> is the independent variable and <i>v</i> is the dependent variable or vary <i>m</i> and measure <i>v</i>	1
	keep <i>P</i> constant	1
	Methods of data collection	
	labelled diagram of workable experiment including: <ul style="list-style-type: none"> • <i>P</i> attached to string • string passing over a supported pulley • string horizontally attached to trolley • labels for pulley and <i>P</i> 	1
	method to <u>determine</u> <i>v</i> e.g. <ul style="list-style-type: none"> • light gate attached to a timer to <u>measure</u> <i>v</i> • motion sensor connected to data logger • ticker tape timer • measure <i>d</i>, and <i>t</i> with timer/stopwatch/light gate and timer (to calculate <i>v</i>) 	1
	use a (top pan) balance to measure <i>m</i>	1
	measure <i>d</i> with a ruler	1
	Method of Analysis	
	plot a graph of $1/v^2$ against <i>m</i> or <i>m</i> against $1/v^2$	1
	$Q = Pg - \frac{1}{2d \times \text{gradient}} \quad \text{or} \quad Q = Pg - \frac{\text{gradient}}{2d} \quad (\text{consistent with graph})$	1
	$R = 2d \times (Pg - Q) \times \text{y-intercept} \quad (= \frac{\text{y-intercept}}{\text{gradient}}) \quad \text{or} \quad R = -\text{y-intercept} \quad (\text{consistent with graph})$	1

Question	Answer	Marks
1	Additional detail including safety considerations	6
	D1 safety precaution related to falling mass P or preventing trolley falling e.g. cushion/sandbox for P , barrier for trolley	
	D2 keep d constant	
	D3 use a large distance for d	
	D4 method to keep d constant, e.g. mark starting and end positions	
	D5 $v = \text{distance} / \text{time}$ for appropriate small distance on ticker tape/card/distance between light gates (not d) or use of $v = 2d / t$ if d and <u>total</u> time measured	
	D6 method to ensure wooden surface is horizontal, e.g. spirit level	
	D7 for <u>same</u> m repeat experiment to find average v or t	
	D8 $\frac{1}{v^2} = \frac{m}{2d \times (Pg - Q)} + \frac{R}{2d \times (Pg - Q)} \quad \text{or} \quad m = \frac{2d(Pg - Q)}{v^2} - R \quad (\text{consistent with graph})$	
	D9 relationship valid <u>if</u> a straight line (not passing through the origin)	
	D10 method of attaching mass m to trolley e.g. tape, adhesive putty	

Question	Answer	Marks
2(a)	gradient = $\frac{4\sigma}{\rho g}$	1
2(b)	<div style="display: flex; align-items: center; justify-content: space-between;"> <div style="flex: 1; padding-right: 10px;"> <p>$(1/d)/\text{mm}^{-1}$</p> <p>0.91 or 0.909</p> <p>0.77 or 0.769</p> <p>0.67 or 0.667</p> <p>0.59 or 0.588</p> <p>0.50 or 0.500</p> <p>0.43 or 0.435</p> </div> </div>	1
	Absolute uncertainties in $\frac{1}{d}$ from $\pm (0.08 \text{ or } 0.09)$ to $\pm (0.01 \text{ or } 0.02)$.	1
2(c)(i)	<p>Six points plotted correctly. Must be accurate to nearest half a small square. Diameter of points must be less than half a small square.</p>	1
	<p>Error bars in $\frac{1}{d}$ plotted correctly. All error bars must be plotted. Total length of bar must be accurate to less than half a small square and symmetrical.</p>	1
2(c)(ii)	<p>Line of best fit drawn. Points must be balanced. Do not accept line from top to bottom point. Line must pass between (0.52, 10.5) and (0.55, 10.5) and between (0.84, 17.0) and (0.87, 17.0).</p>	1
	<p>Worst acceptable line drawn (steepest or shallowest possible line that passes through all the error bars). All error bars must be plotted.</p>	1

Question	Answer	Marks
2(c)(iii)	Gradient determined with clear substitution of data points into $\Delta y / \Delta x$. Distance between data points must be at least half the length of the drawn line.	1
	Gradient of worst acceptable line determined. uncertainty = (gradient of line of best fit – gradient of worst acceptable line) or uncertainty = $\frac{1}{2}$ (steepest worst line gradient – shallowest worst line gradient)	1
2(d)(i)	$\rho \left(= \frac{0.606 - 0.422}{146 \times 10^{-6}} = \frac{0.184}{146 \times 10^{-6}} \right) = 1260 \text{ kg m}^{-3}$ and given to three or four significant figures.	1
2(d)(ii)	% uncertainty in ρ = % uncertainty in m + % uncertainty in V $\left(= \left(\frac{2}{184} + \frac{2}{146} \right) \times 100 = 1.087 + 1.37 \right) = 2.5\%$ or using max $\rho = 186 / 144 = 1292$ and/or min $\rho = 182 / 146 = 1230$	1

Question	Answer	Marks
2(e)	<p>σ determined using gradient with correct substitution shown.</p> $\sigma = \frac{\rho g \times \text{gradient}}{4} = \frac{(\mathbf{d})(\mathbf{i}) \times 9.81 \times (\mathbf{c})(\mathbf{iii})}{4}$	1
	<p>σ determined using gradient and correct SI unit given (N m^{-1} or kg s^{-2}).</p>	1
	<p>Absolute uncertainty in σ determined with correct substitution shown.</p> $\text{uncertainty} = \left(\frac{(\mathbf{d})(\mathbf{ii})}{100} + \frac{\Delta \text{gradient}}{\text{gradient}} \right) \times \sigma$ <p>or</p> $\text{uncertainty} = \left(\frac{2}{184} + \frac{2}{146} + \frac{\Delta \text{gradient}}{\text{gradient}} \right) \times \sigma$ <p>or</p> $\text{using max } \sigma = \frac{\text{max}(\mathbf{d})(\mathbf{i}) \times 9.81 \times \text{max}(\mathbf{c})(\mathbf{iii})}{4}$ <p>or</p> $\text{using min } \sigma = \frac{\text{min } (\mathbf{d})(\mathbf{i}) \times 9.81 \times \text{min } (\mathbf{c})(\mathbf{iii})}{4}$	1
2(f)	<p>d determined to a minimum of two significant figures.</p> $d = \frac{\text{gradient}}{h}$ <p>or</p> $d = \frac{4 \times (\mathbf{e})(\mathbf{i})}{h \times (\mathbf{d})(\mathbf{i}) \times 9.81}$	1