

Cambridge International AS & A Level

PHYSICS

9702/43

Paper 4 A Level Structured Questions

October/November 2021

MARK SCHEME

Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

This document consists of **15** printed pages.

Abbreviations

/	Alternative and acceptable answers for the same marking point.
()	Bracketed content indicates words which do not need to be explicitly seen to gain credit but which indicate the context for an answer. The context does not need to be seen but if a context is given that is incorrect then the mark should not be awarded.
—	Underlined content must be present in answer to award the mark. This means either the exact word or another word that has the same technical meaning.

Mark categories

B marks	These are <u>independent</u> marks, which do not depend on other marks. For a B mark to be awarded, the point to which it refers must be seen specifically in the candidate's answer.
M marks	These are <u>method</u> marks upon which A marks later depend. For an M mark to be awarded, the point to which it refers must be seen specifically in the candidate's answer. If a candidate is not awarded an M mark, then the later A mark cannot be awarded either.
C marks	These are <u>compensatory</u> marks which can be awarded even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known them. For example, if an equation carries a C mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the C mark is awarded. If a correct answer is given to a numerical question, all of the preceding C marks are awarded automatically. It is only necessary to consider each of the C marks in turn when the numerical answer is not correct.
A marks	These are <u>answer</u> marks. They may depend on an M mark or allow a C mark to be awarded by implication.

Annotations

✓	Indicates the point at which a mark has been awarded.
X	Indicates an incorrect answer or a point at which a decision is made not to award a mark.
XP	Indicates a physically incorrect equation ('incorrect physics'). No credit is given for substitution, or subsequent arithmetic, in a physically incorrect equation.

ECF	Indicates 'error carried forward'. Answers to later numerical questions can always be awarded up to full credit provided they are consistent with earlier incorrect answers. <u>Within</u> a section of a numerical question, ECF can be given after AE, TE and POT errors, but not after XP.
AE	Indicates an arithmetic error. Do not allow the mark where the error occurs. Then follow through the working/calculation giving full subsequent ECF if there are no further errors.
POT	Indicates a power of ten error. Do not allow the mark where the error occurs. Then follow through the working/calculation giving full subsequent ECF if there are no further errors.
TE	Indicates incorrect transcription of the correct data from the question, a graph, data sheet or a previous answer. For example, the value of 1.6×10^{-19} has been written down as 6.1×10^{-19} or 1.6×10^{19} . Do not allow the mark where the error occurs. Then follow through the working/calculation giving full subsequent ECF if there are no further errors.
SF	Indicates that the correct answer is seen in the working but the final answer is incorrect as it is expressed to too few significant figures.
BOD	Indicates that a mark is awarded where the candidate provides an answer that is not totally satisfactory, but the examiner feels that sufficient work has been done ('benefit of doubt').
CON	Indicates that a response is contradictory.
I	Indicates parts of a response that have been seen but disregarded as irrelevant.
M0	Indicates where an A category mark has not been awarded due to the M category mark upon which it depends not having previously been awarded.
^	Indicates where more is needed for a mark to be awarded (what is written is not wrong, but not enough). May also be used to annotate a response space that has been left completely blank.
SEEN	Indicates that a page has been seen.

Question	Answer	Marks
1(a)	constant speed or constant magnitude of velocity	B1
	acceleration (always) perpendicular to velocity	B1
1(b)(i)	$F = mv^2/r$ or $v = r\omega$ and $F = mr\omega^2$	C1
	$F = 790 \times 94^2 / 318$ $= 22\,000 \text{ N}$	A1
1(b)(ii)	centripetal acceleration: same	B1
	maximum speed: greater	B1
	time taken for one lap of the track: greater	B1

Question	Answer	Marks
2(a)	work done per unit mass	B1
	(work done in) moving mass from infinity	B1
2(b)(i)	(gravitational) fields from the Earth and Moon are in opposite directions	B1
	(resultant is zero where gravitational) fields are equal (in magnitude)	B1
2(b)(ii)	$g \propto M / r^2$	C1
	$5.98 \times 10^{24} / x^2 = 7.35 \times 10^{22} / (3.84 \times 10^8 - x)^2$	A1
	leading to $x = 3.5 \times 10^8$ (m)	
2(b)(iii)	$\phi(\text{Earth}) = (-)6.67 \times 10^{-11} \times (5.98 \times 10^{24} / 3.5 \times 10^8)$ and $\phi(\text{Moon}) = (-)6.67 \times 10^{-11} \times (7.35 \times 10^{22} / 0.38 \times 10^8)$	C1
	$\phi = (-)6.67 \times 10^{-11} \times [(5.98 \times 10^{24} / 3.5 \times 10^8) + (7.35 \times 10^{22} / 0.38 \times 10^8)]$	C1
	$= - 1.3 \times 10^6 \text{ J kg}^{-1}$	A1

Question	Answer	Marks
3(a)	(thermal) energy per unit mass (to cause temperature change)	B1
	(thermal) energy per unit <u>change</u> in temperature	B1
3(b)(i)	$(T =) pV/Nk$	B1
3(b)(ii)	$(pV =) NkT = \frac{1}{3}Nm\langle c^2 \rangle$ or $pV = NkT$ and $pV = \frac{1}{3}Nm\langle c^2 \rangle$	M1
	leading to $\frac{1}{2}m\langle c^2 \rangle = (3/2)kT$ and $\frac{1}{2}m\langle c^2 \rangle = E_K$	A1
3(b)(iii)	internal energy = $\sum E_K$ (of molecules) + $\sum E_P$ (of molecules) or no forces between molecules	B1
	potential energy of molecules is zero	B1
3(c)(i)	increase in internal energy = Q + work done	B1
	constant volume so no work done	B1
3(c)(ii)	$c = Q / Nm\Delta T$	C1
	$= [N \times (3/2)k\Delta T] / (Nm\Delta T) = 3k / 2m$	A1
3(d)	(as it expands) gas does work (against the atmosphere/external pressure)	B1
	for same temperature rise) more (thermal) energy needed, so larger specific heat capacity	B1

Question	Answer	Marks
4(a)(i)	5.0 cm	A1
4(a)(ii)	$\omega = 2\pi / T$ or $\omega = 2\pi f$ and $f = 1 / T$	C1
	$\omega = 2\pi / 4.0$ $= 1.6 \text{ rad s}^{-1}$	A1
4(a)(iii)	$v_0 = \omega x_0$	C1
	$= 1.57 \times 5.0$ $= 7.9 \text{ cm s}^{-1}$	A1
4(b)	<ul style="list-style-type: none"> initial pull was to the right distance from X to trolley (at equilibrium) is 20 cm period is 4.0 s initial motion undamped motion becomes damped at/from 12 s damping is light maximum speed at 1 s, 3 s, etc. / stationary at 2 s, 4 s, etc. <p>Any three points, 1 mark each</p>	B3
4(c)	<p>sketch: closed loop encircling (20, 0)</p> <p>minimum L shown as 15 cm and maximum L shown as 25 cm</p> <p>minimum v shown as -7.9 cm s^{-1} and maximum v shown as $+7.9 \text{ cm s}^{-1}$</p>	B1 B1 B1

Question	Answer	Marks
5(a)	<ul style="list-style-type: none"> noise can be removed/signal can be regenerated extra bits can be added for error-checking signal can be encrypted (for increased security) data compression/multiplexing is possible <p><i>Any two points, 1 mark each</i></p>	B2
5(b)(i)	4 ms: 0101 and 8 ms: 0100	B1
5(b)(ii)	sketch: horizontal line continues to 8 ms, then new horizontal line from 8 ms to 12 ms	B1
	level of line after 8 ms is 4 mV	B1
5(c)	sketch: series of steps of width 2 ms	B1
	step heights at 0, 2, 4, 6, 4, 6 mV <i>2 marks if all correct, 1 mark if only one incorrect</i>	B2

Question	Answer	Marks
6(a)	$Q = CV$ and $E = \frac{1}{2}CV^2$	B1
6(b)(i)	$C_N = CL / (L - D)$	B1
6(b)(ii)	(charge is unchanged by moving the plates so) $Q_N = CV$	B1
6(b)(iii)	$ \begin{aligned} V_N &= Q_N / C_N \\ &= (CV) / [CL / (L - D)] \\ &= V(L - D) / L \end{aligned} $	B1
6(c)	oppositely charged plates attract, so energy stored decreases	B1

Question	Answer	Marks
7(a)	<ul style="list-style-type: none"> • infinite (open-loop) gain • infinite slew rate • infinite input impedance • zero output impedance • infinite bandwidth <p><i>Any two points, 1 mark each</i></p>	B2
7(b)	X: thermistor and Y: relay	B1
7(c)(i)	(any) difference in voltage at the inputs causes output to saturate (because gain is very large)	B1
	saturates positively if $V^+ > V^-$ and saturates negatively if $V^+ < V^-$	B1
7(c)(ii)	comparator	B1
7(c)(iii)	temperature	M1
	above a particular value	A1
7(c)(iv)	to adjust the temperature (at which the lamp illuminates/extinguishes)	B1

Question	Answer	Marks
8(a)	newton per ampere per metre	M1
	where current/wire is perpendicular to magnetic field	A1
8(b)(i)	$F = BIL \sin\theta$	C1
	$B = 1.0 / (5.0 \times 0.060 \times \sin 50^\circ)$ = 4.4 mT	A1
8(b)(ii)	(from Fleming's left-hand rule) force on wire is upwards, so reading decreases	B1
8(b)(iii)	frame will rotate (so that PQ becomes perpendicular to the field)	B1

Question	Answer	Marks
9(a)	constant voltage	M1
	that produces/dissipates same power as (the mean power of) the alternating voltage	A1
9(b)(i)	(maximum) rate of cutting of (magnetic) flux doubles	B1
	(peak and hence) r.m.s. induced e.m.f. doubles	B1
9(b)(ii)	sketch: (sinusoidal) wave of period 10 ms	B1
	peak E shown as $\pm 34\text{ V}$	B2
	(1 mark out of 2 awarded if peak E shown as $\pm 17\text{ V}$ or $\pm 24\text{ V}$)	
9(c)	current in the coil results in forces that oppose its rotation or current in the resistor dissipates the energy of rotation	B1
	coil stops rotating	B1

Question	Answer	Marks
10(a)(i)	photoelectric effect	B1
10(a)(ii)	electron diffraction	B1
10(b)(i)	$\lambda = h / p$	M1
	h is the Planck constant	A1
10(b)(ii)	de Broglie (wavelength)	B1
10(c)(i)	$\frac{1}{2}mv^2 = eV$	C1
	$\frac{1}{2} \times 9.11 \times 10^{-31} \times v^2 = 1.60 \times 10^{-19} \times 4800$ so $v = 4.1 \times 10^7 \text{ m s}^{-1}$	A1
10(c)(ii)	$\lambda = h / mv$	C1
	$= 6.63 \times 10^{-34} / (9.11 \times 10^{-31} \times 4.1 \times 10^7)$	
	$= 1.8 \times 10^{-11} \text{ m}$	A1

Question	Answer	Marks
11(a)(i)	ease with which edges can be distinguished	B1
11(a)(ii)	difference in degrees of blackening	B1
11(b)	$I = I_0 \exp(-\mu x)$	C1
	$0.12 = \exp(-\mu \times 2.3)$	C1
	$\ln 0.12 = -2.3 \times \mu$	
	$\mu = 0.92 \text{ cm}^{-1}$	A1
11(c)	advantage: produces 3-dimensional image	B1
	disadvantage: (much) greater exposure to radiation	B1

Question	Answer	Marks
12(a)	probability of decay (of a nucleus)	M1
	per unit time	A1
12(b)	$A = \lambda N$	C1
	$N = \text{mass} / (\text{nucleon number} \times u)$	C1
	$2.92 \times 10^9 = (\lambda \times 5.87 \times 10^{-10}) / (131 \times 1.66 \times 10^{-27})$	A1
	$\lambda = 1.08 \times 10^{-6} \text{ s}^{-1}$	
12(c)	<ul style="list-style-type: none"> sample emits radiation in all directions some radiation is absorbed by air/detector window self-absorption within the source dead time/inefficiency of detector <i>Any two points, 1 mark each</i>	B2