

Cambridge International AS & A Level

PHYSICS 9702/42
Paper 4 A Level Structured Questions October/November 2022
MARK SCHEME

Maximum Mark: 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2022 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

© UCLES 2022 [Turn over

Abbreviations

/	Alternative and acceptable answers for the same marking point.
()	Bracketed content indicates words which do not need to be explicitly seen to gain credit but which indicate the context for an answer. The context does not need to be seen but if a context is given that is incorrect then the mark should not be awarded.
	Underlined content must be present in answer to award the mark. This means either the exact word or another word that has the same technical meaning.

Mark categories

B marks	These are <u>independent</u> marks, which do not depend on other marks. For a B mark to be awarded, the point to which it refers must be seen specifically in the candidate's answer.
M marks	These are method marks upon which A marks later depend. For an M mark to be awarded, the point to which it refers must be seen specifically in the candidate's answer. If a candidate is not awarded an M mark, then the later A mark cannot be awarded either.
C marks	These are <u>compensatory</u> marks which can be awarded even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known them. For example, if an equation carries a C mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the C mark is awarded. If a correct answer is given to a numerical question, all of the preceding C marks are awarded automatically. It is only necessary to consider each of the C marks in turn when the numerical answer is not correct.
A marks	These are answer marks. They may depend on an M mark or allow a C mark to be awarded by implication.

© UCLES 2022 Page 5 of 16

Question	Answer	Marks
1(a)	force per unit mass	B1
1(b)(i)	lines drawn are radial from the surface	B1
	arrows show pointing towards planet	B1
1(b)(ii)	field lines show force (on satellite) is towards centre of planet or velocity of satellite is perpendicular to field lines	B1
	(gravitational) force perpendicular to velocity causes centripetal <u>acceleration</u>	B1
1(c)(i)	T = 24 hours	C1
	$a=r\omega^2$ and $\omega=2\pi/T$ or $a=v^2/r$ and $v=2\pi r/T$ or $a=4\pi^2 r/T^2$	C1
	$a = (4\pi^2 \times 6.4 \times 10^6) / (24 \times 60 \times 60)^2$ $= 0.034 \text{ m s}^{-2}$	A1
1(c)(ii)	identification of the two forces acting on the object as gravitational force and (normal) contact force	M1
	gravitational force and normal contact force are in opposite directions, and their resultant causes the (centripetal) acceleration	A1

© UCLES 2022 Page 6 of 16

Question	Answer	Marks
2(a)	(thermal) energy per unit mass (to cause temperature change)	B1
	(thermal) energy per unit change in temperature	B1
2(b)(i)	work done correct (0)	B1
	increase in internal energy correct (+E)	B1
2(b)(ii)	work done correct (-W) and increase in internal energy same as (b)(i)	B1
	thermal energy correct so that it adds to work done to give increase in internal energy	B1
2(c)	more thermal energy needed so specific heat capacity is greater	B1

© UCLES 2022 Page 7 of 16

Question	Answer	Marks
3(a)	$p = \text{pressure (of gas)}, \ V = \text{volume (of gas)} \ \text{and} \ k = \text{Boltzmann constant}$	B1
	N = number of molecules	B1
	T = thermodynamic temperature	B1
3(b)	$(pV = NkT \text{ and } pV = \frac{1}{3}Nm < c^2 > \text{ leading to}) NkT = \frac{1}{3}Nm < c^2 >$	M1
	algebra leading to $(3/2)kT = \frac{1}{2}m < c^2 > $ and use of $\frac{1}{2}m < c^2 > = E_K$ leading to $(3/2)kT = E_K$	A1
3(c)(i)	T = 296 K	C1
	$\frac{1}{2}m < c^2 > = (3/2)kT$	C1
	$1/2 \times 5.31 \times 10^{-26} \times u^2 = (3/2) \times 1.38 \times 10^{-23} \times 296$	
	$u = 480 \mathrm{m s^{-1}}$	A1
3(c)(ii)	line passing through (P, u)	B1
	horizontal straight line	B1

© UCLES 2022 Page 8 of 16

Question	Answer	Marks
4(a)(i)	$x_0 = 8.0 \text{cm}$	A1
4(a)(ii)	$\omega = 2\pi / T$	C1
	$= 2\pi / 4.0 = 1.6 \text{rad s}^{-1}$	A1
4(a)(iii)	$E = \frac{1}{2}m\omega^2 x_0^2$	C1
	$= \frac{1}{2} \times 36 \times 1.6^2 \times 0.080^2$	C1
	= 0.29 J	A1
4(b)	dome-shaped curve, starting and ending at $E_K = 0$	B1
	maximum E_{K} shown as 0.29 J	B1
	position of peak shown at h = 10.0 cm	B1
	line intercepts h -axis at $h = 2.0$ cm and at $h = 18.0$ cm	B1

Question	Answer	Marks
5(a)	work done per unit charge	B1
	work done (on charge) in moving positive charge from infinity (to the point)	B1
5(b)(i)	radius = 0.060 m	A1
5(b)(ii)	$V = Q/4\pi\varepsilon_0 x$	C1
	$Q = (-) 850 \times 4\pi \times 8.85 \times 10^{-12} \times 0.060$ or $Q = (-) 850 \times 0.060 / 8.99 \times 10^{9}$	
	(any correct pair of V and x values from curve)	
	$Q = -5.7 \times 10^{-9} \mathrm{C}$	A1
5(c)(i)	$E_{\rm P} = Q^2 / 4\pi \varepsilon_0 x$	C1
	$= (5.67 \times 10^{-9})^2 / (4\pi \times 8.85 \times 10^{-12} \times 0.46)$	
	$=6.3 \times 10^{-7} \mathrm{J}$	A1
5(c)(ii)	 force is repulsive so spheres move apart force in direction of motion so speed increases potential energy converted to kinetic energy so speed increases force decreases with distance so acceleration decreases momentum is conserved (at zero) (and masses are equal) so velocities are always equal and opposite Any three points, 1 mark each 	В3

© UCLES 2022 Page 10 of 16

Question	Answer	Marks
6(a)	 p.d. across resistor = p.d. across capacitor current (in resistor) proportional to p.d. across it current causes capacitor to lose charge charge (on capacitor) proportional to p.d. so p.d. decreases Any two points, 1 mark each 	B2
	rate of change of p.d. decreases as p.d. decreases	B1
6(b)	$Q_0 = 0.90 \mathrm{mC}$ and at $t = \mathrm{one}$ time constant, $Q = Q_0 \mathrm{exp}$ (-1)	B1
	at $t = \text{one time constant}$, $Q = 0.90 \text{ exp } (-1) = 0.33 \text{ mC}$	M1
	evidence of graph reading: when $Q = 0.33$ mC, $t = 5.5$ s	A1
	or	
	evidence of two correct sets of readings for Q and t from the graph	(B1)
	correct substitution of Q and t values into $Q_2 = Q_1 \exp[(t_1 - t_2)/\tau]$	(M1)
	calculation to give $\tau = 5.5 \mathrm{s}$	(A1)
	or	
	read-off of half-life as 3.75 s	(B1)
	use of Q = $Q_0 \exp(-t/\tau)$ to show that $\tau = \text{half-life/ln 2}$	(M1)
	$\tau = 3.75 / \ln 2 = 5.4 \mathrm{s}$	(A1)

© UCLES 2022 Page 11 of 16

Question	Answer	Marks
6(b)	or	
	tangent drawn on Q-t graph and value of Q at exact same time as tangent read from graph	(M1)
	gradient of tangent correctly calculated	(A1)
	τ = Q/gradient used to correctly calculate a value for τ as 5.5 s	(A1)
6(c)(i)	C = Q/V	C1
	$= [(0.90 \times 10^{-3}) / 7.5] = 1.2 \times 10^{-4} \mathrm{C}$	A1
	= 120 μF	
6(c)(ii)	$R = \tau/C$	C1
	$= 5.5/(1.2 \times 10^{-4}) $ (= 45 800 Ω)	A1
	$=46 \text{ k}\Omega$	

© UCLES 2022 Page 12 of 16

Question	Answer	Marks
7(a)	force per unit current	M1
	force per unit length	M1
	current / wire is perpendicular to (magnetic) field (lines)	A1
7(b)(i)	current (in coil) is perpendicular to magnetic field (so force on wire)	B1
	force (on wire) is perpendicular to current and field (so is vertical) or current and field are both horizontal (so force is vertical)	B1
7(b)(ii)	NBIL = mg	C1
. (७)()	$B = (2.16 \times 10^{-3} \times 9.81) / (40 \times 3.94 \times 0.0300)$	C1
	$=4.48 \times 10^{-3} \mathrm{T}$	A1
7(b)(iii)	(magnetic) forces (on balance and newton meter) are (equal and) opposite	B1
	reading = $0.563 - (2.16 \times 10^{-3} \times 9.81)$	A1
	= 0.542 N	

© UCLES 2022 Page 13 of 16

Question	Answer	Marks
8(a)	direction of induced e.m.f.	M1
	such as to (produce effects that) oppose the change that caused it	A1
8(b)(i)	$X = 0.85 \mathrm{A}$	A1
	$Y = 2\pi/0.040$	C1
	$= 160 \text{rad s}^{-1}$	A1
8(b)(ii)	two cycles of a sinusoidal curve with a period of 0.040 s	B1
	correct phase (i.e. V_2 max/min at $t = 0$, 0.02, 0.04, 0.06 and 0.08 s, and V_2 zero at $t = 0.01$, 0.03, 0.05, 0.07 s)	B1
	maximum / minimum V_2 shown (consistently) at \pm 6.5 V	B1
8(b)(iii)	(magnitude of) V_2 is proportional to rate of change of (magnetic) flux	B1
	 V₂ is proportional to <u>gradient</u> of I₁-t curve V₂ has maximum magnitude when I₁-t curve is steepest V₂ is zero when I₁-t curve is horizontal / a maximum or minimum V₂ changes sign when sign of gradient of I₁-t curve changes Any two points, 1 mark each 	B2

© UCLES 2022 Page 14 of 16

Question	Answer	Marks
9(a)(i)	 energy of photon has a corresponding frequency change in electron energy level emits a single photon photon energy = difference in energy levels discrete frequencies must have come from discrete energy gaps discrete energy changes imply discrete energy levels Any three points, 1 mark each 	В3
9(a)(ii)	transition (to – 3.400 eV) from X corresponds to 658 nm line	C1
	$E_1 - E_2 = hc/\lambda$	C1
	$E_1 - (-3.400) = (6.63 \times 10^{-34} \times 3.00 \times 10^8) / (658 \times 10^{-9} \times 1.60 \times 10^{-19})$	A1
	and so $E_1 = -1.51 \text{ eV}$ (full substitution and answer needed)	
9(b)(i)	redshift	B1
9(b)(ii)	moving away (from observer)	B1
9(b)(iii)	$\Delta \lambda / \lambda = v/c$	C1
	e.g. for 658 nm line: $\Delta \lambda = 686 - 658$	
	(= 28 nm) (other lines may be used)	
	$28/658 = v/(3.00 \times 10^8)$ (other lines may be used)	C1
	$v = 1.3 \times 10^7 \mathrm{m s^{-1}}$	A1
9(c)	$V = H_0 d$	C1
	$H_0 = (1.3 \times 10^7) / (5.7 \times 10^{24})$	A1
	$= 2.3 \times 10^{-18} \mathrm{s}^{-1}$	

© UCLES 2022 Page 15 of 16

Question	Answer	Marks
10(a)(i)	introduction of tracer (into the body)	M1
	containing a β+ emitter	A1
10(a)(ii)	positron interacts with electron	B1
	(pair) annihilation occurs	B1
	mass of particles converted into gamma photons	B1
10(b)	(annihilation of electron and positron) produces two photons	B1
	$E = (\Delta)mc^2$	B1
	$E = hf$ and $f = c/\lambda$ or $E = hc/\lambda$	B1
	$\lambda = \{[2\times] 6.63 \times 10^{-34} \times 3.00 \times 10^{8}\} / \{[2\times] 9.11 \times 10^{-31} \times (3.00 \times 10^{8})^{2}\}$	B1
	= $2.4(3) \times 10^{-12}$ m or $2.4(3)$ pm (full substitution and answer with unit needed)	

© UCLES 2022 Page 16 of 16